Bulk Diesel Multi-Skid

Applications

FLEET FILL / BULK FUEL TRANSFER

PROTECTION FOR HIGH-FLOW FUEL INJECTION SYSTEMS

KIDNEY LOOP / RECIRCULATION

210-280 gpm ^{ICF}			
795-1060 L/m	NIN BDF		
150 psi 10.3 bar	BDA		
10.5 Dal	GHPF		
	GHCF		
	QCF		
	BDS		
	BDS2		
	BDS3		
	BDS4		
	LVH-F		
	LVH-C		
	BDFC		
	BDFP		
	BDC		
	HDP		
	HDPD		
	BCC		

Features and Benefits

- Designed with integrated particulate removal pre-filtration for maximum coalescing filter element life in the downstream housing
- Sized for higher flows or highly contaminated fluid applications
- Routine element change is only needed on pre-filter (the particulate filter) which saves time and money
- Patent-pending, three-phase, particulate and fuel/water separation media technology
- A revolutionary element designed for the highest single-pass water and particulate removal efficiencies in today's ultra-low sulfur diesel (ULSD) fluids
- Protects expensive Tier 3 and Tier 4 engine components against failures caused by particulate and water transferred from the bulk fuel tank to the vehicle
- Allows users to achieve or exceed the particulate and water removal specifications of the injection system OEMs
- Previously acceptable industry standard products no longer provide the high-efficiency separation needed in today's ULSD fluids
- In applications >32°F (0°C) complete automation is achievable with a water in fuel sensor fail-safe auto-drain feature using a remote 5 gallon (18L) or 20 gallon (75L) sump with alarm and auto shutdown
- Schroeder Anti-Static Pleat Media (ASP®) is standard for all coalescing elements

INDUSTRIAL

GENERATION

VEHICLES

COMMON RAIL INJECTOR SYSTEMS

0

MINING

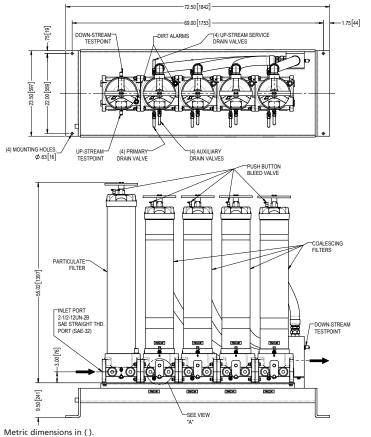
TECHNOLOGY

RAILROAD

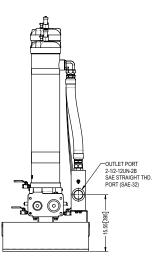
FLEET

Model no. of filter in photograph is:

BDS439QPMLZ3VD5

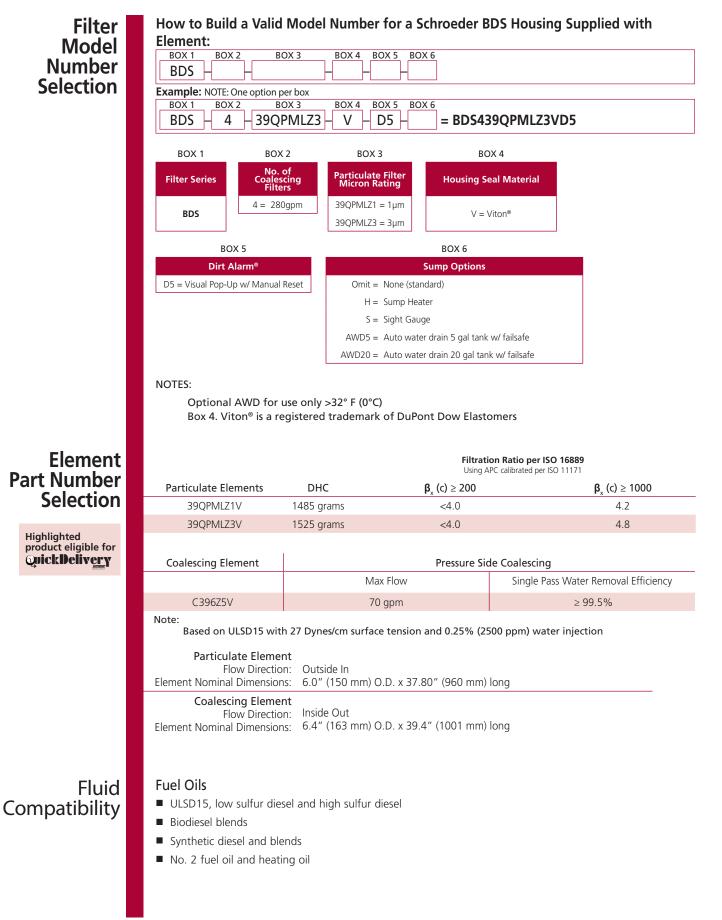


BDS4 Bulk Diesel Multi-Skid


Flow Rating:	From 210 gpm to 280 gpm (795 to 1060 L/min) for ULSD15				
Inlet/Outlet Connection:	-32 (ORB) SAE J1926				
Drain Connection Upper:	1/4" NPT Ball Valve				
Drain Connection Lower:	1/4" NPT Ball Valve				
Max. Operating Pressure:	150 psi (10.3 bar)				
Min. Yield Pressure:	400 psi (27.6 bar) without sight gauge				
	Contact factory for yield pressure rating with sight gauge				
Rated Fatigue Pressure:	Contact Factory				
Temperature range:	-20°F to 165°F (-29°C to 74°C) sump heater option				
	32°F to 165°F (0°C to 74°C) standard or AWD option				
Bypass Indication:	Particulate Filter	Coalescing Filter			
(Lower indication options available)	Particulate: 15 psi (1.03 bar)	Coalescing: 25 psi (1.7 bar)			
Bypass Valve Cracking:		Coalescing Filter			
	Particulate: 20 psi (1.37 bar)	Coalescing: 30 psi (2 bar)			
Materials of Construction:		Coalescing Filter			
	Porting Base: Anodized Aluminum	Porting Base: Anodized Aluminum			
	Element Bowl: Epoxy Paint w/ High-phos Electroless Nickel Plating (Standard)	Element Bowl: Epoxy Paint w/ High-phos Electroless Nickel Plating (Standard)			
	Cap: Plated Steel	Cap: Plated Steel			
Weight:	904 Lbs. (410 kg)				
Element Change Clearance:	33.8" (858 mm)				

NOTES:

Elements are sold with the housing



Dimensions shown are inches for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

Bulk Diesel Multi-Skid BDS4

	Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171			Element	
Particulate Elements	DHC	β_x (c) ≥ 200	β _x (c) ≥ 1000	Particulate	
39QPMLZ1V	1485 grams	<4.0	4.2	Performance	
39QPMLZ3V	1525 grams	<4.0	4.8		
Coalescing Element		Pressure Side Coal	escing	Element GHI	
	Ma	x Flow Sir	gle Pass Water Removal Efficiency	Coalescing	
C396Z5V	70) gpm	≥ 99.5%	Performance ^{GH}	
Particulate Eleme	nt	ension and 0.25% (2500 ppm) v	vater injection	Information Elements Sold with Housing	
Element Nominal Dimensior		D.D. x 37.80" (960 mm) long		Highlighted product eligible for QuickDelivery BD	
Element Nominal Dimension	ns: 6.4" (163 mm) (D.D. x 39.4" (1001 mm) long		BD	
$\Delta P_{housing}$		$\Delta P_{element}$		Pressure	
BDS $\Delta P_{housing}$ for fluids with sp gr	= 0.86		ment ΔP factor x viscosity factor	Drop LVF	
		El. ∆P factors @ 37	SUS (3 cSt).	Information	
Flow L/mi	n	C396Z5V = 0.17	1	Based on LVI	
(200) (400) (600)	(800) (1000)	39QPMLZ1V = 0.0 39QPMLZ3V = 0.0		Flow Rate and BD	
· - + + + - + - + - + - + + - + - + + - + - + - + + - + - + + - + + - + - + - + + - + - + - + - + - + - + + - +		(1.25)	& L/min, divide above factor by 54.9.	Viscosity	
		(1.0) Viscosity factor: Divide visc		BD	
· · · · · · · · · · · · · · · · · · ·			only by 57 505 (5 636).		
		(0.75) (bad) (bad)		B	
		(0.5) D		н	
		(0.25)			
25 50 75 100 125 150 17	5 200 225 250 275 2	80		HD	
6 25 50 75 100 125 150 17 Flow gpn		$\Delta P_{\text{filter}} = \Delta P_{\text{housing}} + A$	ΔΡ.	В	
Notes		Exercise: Determ	ine ΔP at 280 gpm (1060 L/min) for		
		BDS239QPMLZ3VI Solution:	05		
		$\Delta P_{\text{housing}} = 19 \text{ psi } [1.$			
			0 gpm x 0.01 = 2.8 psi [0.19 bar]		
			4 gpm x 0.17 = 11.9 psi [0.82 bar]		
		ΔP _{total} = 19 psi + 2.8	psi + 11.9 psi = 33.7 psi [2.32 bar]		

Bulk Diesel Multi-Skid

