

Features and Benefits

- Meets HF4 automotive standard
- Offered in pipe, SAE straight thread, flange and ISO 228 porting
- Available with NPTF inlet and outlet female test ports
- KFN5 non-bypass version with high collapse elements also available
- Various Dirt Alarm® options
- Allows consolidation of inventoried replacement elements by using K-size elements
- Also available with DirtCatcher® elements (KD & KKD)
- G Available with quality-protected GeoSeal® Elements (GKF5)

100 gpm 380 Ľ/min 500 psi 35 bar

KF5

K9

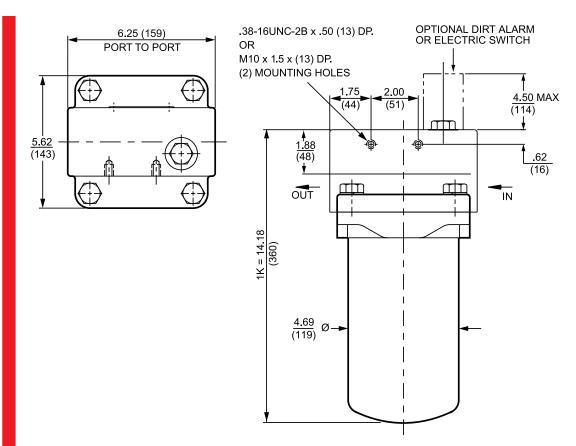
Filter Housing **Specifications**

Flow Rating:	Up to 100 gpm (380 L/min) for 150 SUS (32 cSt) fluids
Max. Operating Pressure:	500 psi (35 bar)
Min. Yield Pressure:	1500 psi (100 bar) , per NFPA T2.6.1
Rated Fatigue Pressure:	300 psi (35 bar), per NFPA T2.6.1-2005
Temp. Range:	-20°F to 225°F (-29°C to 107°C)
Bypass Setting:	Cracking: 40 psi (2.8 bar) Full Flow: 61 psi (4.2 bar)
Porting Head:	Grey Cast Iron
Element Case:	Steel
Weight of KF5-1K:	23.2 lbs. (10.5 kg)
Element Change Clearance:	2.0" (51 mm)

Type Fluid Appropriate Schroeder Media

Petroleum Based Fluids All E media (cellulose), Z-Media® and ASP® media (synthetic) High Water Content All Z-Media® (synthetic), 3, 5 and 10 μ ASP® media (synthetic)

Invert Emulsions 10 and 25 μ Z-Media® (synthetic), 10 μ ASP® media (synthetic)


Water Glycols 3, 5, 10 and 25 μ Z-Media® (synthetic), 3, 5 and 10 μ ASP® media (synthetic) Phosphate Esters All Z-Media® (synthetic) with H (EPR) seal designation and 3 and 10 μ

E media (cellulose) with H (EPR) seal designation, 3, 5 and 10 μ ASP® media (synthetic)

Skydrol[®] 3, 5, 10 and 25 μ Z-Media[®] (synthetic) with H.5 seal designation (EPR seals & stainless steel wire mesh in element, and light oil coating on housing exterior), 3, 5 and 10 µ ASP®

media (synthetic)

Fluid Compatibility

Metric dimensions in ().

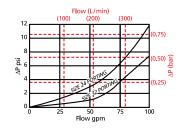
Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

Element Performance Information & Dirt Holding Capacity

	Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402			Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171	
Element	ß _X ≥ 75	ß _X ≥ 100	$\beta_{\chi} \ge 200$	$\beta_{X}(c) \ge 200$	$\beta_{\chi}(c) \ge 1000$
KZ1	<1.0	<1.0	<1.0	<4.0	4.2
KZ3	<1.0	<1.0	<2.0	<4.0	4.8
KZ5	2.5	3.0	4.0	4.8	6.3
KZ10	7.4	8.2	10.0	8.0	10.0
KZ25	18.0	20.0	22.5	19.0	24.0
KZW1	N/A	N/A	N/A	<4.0	<4.0
KZW3	N/A	N/A	N/A	4.0	4.8
KZW5	N/A	N/A	N/A	5.1	6.4
KZW10	N/A	N/A	N/A	6.9	8.6
KZW25	N/A	N/A	N/A	15.4	18.5

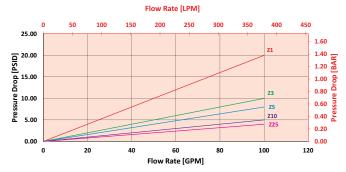
Element	DHC (gm)	Element	DHC (gm)	Element	DHC (gm)
KZ1	112	KZW1	61	KDZ1	89
KZ3/KAS3	115	KZW3	64	KDZ3	71
KZ5/KAS5	119	KZW5	63	KDZ5	100
KZ10/KAS10	108	KZW10	67	KDZ10	80
KZ25	93	KZW25	79	KDZ25	81

Element Collapse Rating: 150 psid (10 bar) for standard elements


Flow Direction: Outside In

Element Nominal Dimensions: 3.9" (99 mm) O.D. x 9.0" (230 mm) long

KF5


 $\triangle \textbf{P}_{\text{housing}}$

KF5 $\Delta P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

 $\triangle \boldsymbol{P}_{\text{element}}$

KZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

$$\triangle \mathbf{P}_{\text{filter}} = \triangle \mathbf{P}_{\text{housing}} + (\triangle \mathbf{P}_{\text{element}} * \forall_f)$$

Exercise:

Determine ΔP_{filter} at 50 gpm (189.5 L/min) for KF51KZ10S24D5 using 200 SUS (42.6 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 50 gpm. In this case, $\Delta P_{\text{housing}}$ is 3 psi (.21 bar) on the graph for the KF5 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 50 gpm. In this case, $\Delta P_{\text{element}}$ is 2 psi (.14 bar) according to the graph for the KZ10 element.

Because the viscosity in this sample is 200 SUS (42.6 cSt), we determine the **Viscosity Factor** (V_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\Delta \mathbf{P}_{\text{filter}}$, is calculated by adding $\Delta \mathbf{P}_{\text{housing}}$ with the true element pressure differential, ($\Delta \mathbf{P}_{\text{element}} * v_f$). The $\Delta \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution

 $\Delta \mathbf{P}_{\text{housing}} = 3 \text{ psi } [.21 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 2 \text{ psi } [.14 \text{ bar}]$

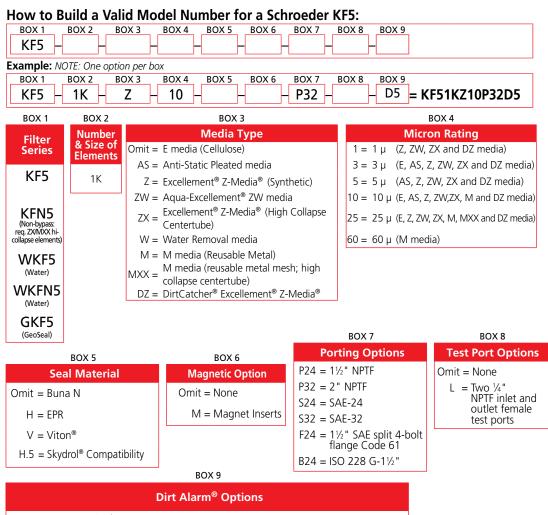
 $V_f = 200 \text{ SUS } (42.6 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.3$

$$\Delta \mathbf{P}_{\text{filter}} = 3 \text{ psi} + (2 \text{ psi} * 1.3) = 5.6 \text{ psi}$$

OR

 $\Delta \mathbf{P}_{\text{filter}}$ = .21 bar + (.14 bar * 1.3) = .40 bar

Pressure Drop Information Based on Flow Rate and Viscosity


Vloto:

If your element is not graphed, use the following equation: $\Delta \textbf{P}_{\text{element}} = \text{Flow Rate x } \Delta \textbf{P}_{f}. \text{ Plug this variable into the overall pressure drop equation.}$

ressure arop equ Ele.	△P
K3	0.25
K10	0.09
K25	0.02
KAS3	0.10
KAS5	0.08
KAS10	0.05
KDZ1	0.24
KDZ3	0.12
KDZ5	0.10
KDZ10	0.06
KDZ25	0.04
KZW1	0.43
KZW3	0.32
KZW5	0.28
KZW10	0.23
KZW25	0.14

Filter Model Number Selection

NOTES:

- Box 2. Replacement element part numbers are a combination of Boxes 2, 3, 4 and 5. *Example*: KZ10V High collapse media only available with KFN5.
- Box 5. For options H, V, and H.5, all aluminum parts are anodized. H.5 seal designation includes the following: EPR seals, stainless steel wire mesh on elements, and light oil coating on housing exterior. Viton® is a registered trademark of DuPont Dow
 - Elastomers. Skydrol® is a registered trademark of Solutia Inc.
- Box 7. B porting supplied with metric mounting holes.

	Dirt Alarm [®] Options
	Omit = None
Visual	D = Pointer D5 = Visual pop-up
Visual with Thermal Lockout	D8 = Visual w/ thermal lockout
Electrical	MS5 = Electrical w/ 12 in. 18 gauge 4-conductor cable MS5LC = Low current MS5 MS10 = Electrical w/ DIN connector (male end only) MS10LC = Low current MS10 MS11 = Electrical w/ 12 ft. 4-conductor wire MS12 = Electrical w/ 5 pin Brad Harrison connector (male end only) MS12LC = Low current MS12 MS16 = Electrical w/ weather-packed sealed connector MS16LC = Low current MS16 MS17LC = Electrical w/ 4 pin Brad Harrison male connector
Electrical with Thermal Lockout	MS5T = MS5 (see above) w/ thermal lockout MS5LCT = Low current MS5T MS10T = MS10 (see above) w/ thermal lockout MS10LCT = Low current MS10T MS12T = MS12 (see above) w/ thermal lockout MS12LCT = Low current MS12T MS16T = MS16 (see above) w/ thermal lockout MS16LCT = Low current MS16T MS16LCT = Low current MS16T
Electrical Visual	MS = Cam operated switch w/ ½" conduit female connection MS13 = Supplied w/ threaded connector & light MS14 = Supplied w/ 5 pin Brad Harrison connector & light (male end)
Electrical Visual with Thermal Lockout	MS13DCT = MS13 (see above), direct current, w/ thermal lockout MS13DCLCT = Low current MS13DCT MS14DCT = MS14 (see above), direct current, w/ thermal lockout MS14DCLCT = Low current MS14DCT