

Products Catalog

FILTER SYSTEMS

Filter Systems

Vision Mission Value Quality Statement:

Vision:

We design solutions for industry and for the success of our customers by:

- Optimizing the use of technology with applications
- Using an efficient, timely customized process to fill specific customer needs
 Increasing capacity and streamlining
- Increasing capacity and streamlining operations.
 Preserving our reputation for reliability
- Expanding globally to support our customers and stay current with new technologies
- Leveraging and sharing our knowledge to meet challenges openly
- Nurturing a creative, cooperative culture committed to the individual and to providing the best solutions for the customers

Mission Statement:

Partnerships

Innovating products, processes and services to improve performance and efficiency in our industry.

Schroeder Industries Core | Shared Values: Honesty

Day-to-Day Behaviors:

- Tell the truth at all times, in all matters
- Have open lines of communication and share timely, accurate and thorough information with internal and external customers
- Do not steal and respect each other's and the Company's property

Teamwork

Day-to-Day Behaviors:

- Work as a team
 - Cooperate within and between departments
 - Coach and mentor; listen and share knowledge, experience and ideas
 - Treat others with respect and consideration in all circumstances
 - Invest in the development and growth of all team members
 - Keep our work areas safe and clean

Leadership

Day-to-Day Behaviors:

- Recognize that we are empowered to act as leaders and participate in the decision making process
- Take responsibility for and have pride in our work
- Set goals and celebrate the efforts and accomplishments of our teammates
- Value our greater community and take leadership roles in our neighborhoods and for the environment

Ingenuity | Innovation

Day-to-Day Behaviors:

- Value innovative thinking and the generation and implementation of new ideas to solve customer (internal & external) problems
- Be flexible and adapt to new ideas and different ways of doing things
- Utilize available resources for new designs and innovations

Quality Policy:

Continuous improvement in our business to ensure a quality product, shipped on time, without compromise.

Limitations of Liability

The information contained in the catalog (including, but not limited to, specifications, configurations, drawings, photographs, dimensions and packaging) is for descriptive purposes only. Any description of the products contained in this catalog is for the sole purpose of identifying the products and shall not be deemed a warranty that the products shall conform to such description. No representation or warranty is made concerning the information contained in this catalog as to the accuracy or completeness of such information. Schroeder Industries LLC reserves the right to make changes to the products included in this catalog without notice. A copy of our warranty terms and other conditions of sale are available upon request. A placed order constitutes acceptance of Schroeder's terms and conditions.

Failure, improper selection or improper use of the products and/or systems described herein or related items can cause death, personal injury and property damage.

This catalog and other documentation from Schroeder Industries provides product information for consideration by users possessing technical expertise.

It is important that the user analyze all aspects of the specific application and review the current product information in the current catalog. Due to the variety of operating conditions and applications for these products, the user is solely responsible for making the final product selection and assuring that all performance, safety and warning requirements of the application are met.

The products described herein, including without limitation, product features, specifications, design, availability and pricing are subject to change at any time without notice.

Contents at a Glance: Introduction

Overview of Schroeder's Approach to Advanced Fluid Conditioning Solutions
Finding the cleanliness level required by a system9
Definition of Fluid Contamination Management and the Technical Cleanliness Process
Technical Cleanliness and Contamination Management Basics
Classification of Particulate Contamination in Fluids and Parts Cleanliness Measurement Using Gravimetric Analysis
ISO 4406 Particle Counting in Fluid Systems
NAS 1638 Particle Counting in Fluid Systems15
SAE AS 4059(D) Laboratory Particle Counters in Fluid Systems
Fluid Condition Field Analysis Tools
Determining the Residual Dirt Quantity of Components and Technical Cleanliness
Testing Methods Comparison
Evaluation Methods
Contamination Monitoring21
Analyzing the Data
Sources of Contamination in the Manufacturing and Assembly of Hydraulic Systems
Removal of Particulate Contamination
Preventing Contamination
Why Contamination Control is Important
Contamination Management in Practice

Product Guide by Part Number

Section 1: Diagnostic Products	
CS 1000 Contamination Sensor	34
CSI-C-11 ConditionSensor Interface	
HY-TRAX [®] Manually Controlled Fluid Sampling System	41
HY-TRAX [®] Telematic Communications Module with Remote Controlled Sampling S	System45
RBSA Reservoir Breather Fluid Sampling Adapter	51
CSM 1000 Sensor Module	53
FCU Series	55
MCS Metallic Contamination Sensor Series	57
AS AquaSensor	59
SMU Sensor Monitoring Unit	61
CTU TestMate [®] Contamination Test Unit	63
EPK EasyTest Series	65
WTK WaterTest Series (COMING SOON)	65
Trouble Check Plus Fluid Analysis	67
HMG2500 TestMate [®] Series	69
HMG4000 TestMate [®] Series	73
ET-100-6 Original TestMate [®]	79
HTB Hydraulic Test Bench	81
Section 2: Fluid Conditioning Products	
RFSA Reservoir Filtration System Adapter	90
HFS-BC Handy Filter Systems Basic Cart	92
HFS-15 Hand Held Portable Filter	94
MFD-BC Mobile Filtration System Basic Cart	96
MFS, MFD Mobile Filtration Systems	
HY-TRAX [®] Retrofit System Assembly	
MFD-MV Medium Viscosity Mobile Filtration Systems	
MFS-HV and MFD-HV Mobile Filtration System High Viscosity	
AMS, AMD Air-Operated Mobile Filtration Systems	
FS Filtration Station [®]	
AMFS Asset Management Filtration Station [®]	
KLS, KLD Kidney Loop Systems	
MCO Fail-Safe In-Line Mechanical Clean Oil Dispenser	
AKS, AKD Air-Operated Kidney Loop Systems	
X Series Filter Skids	
OLF Compact Offline Filtration System	
OLF Offline Filtration System	
OLF-P	
NxTM TriMicron Element Series	132
VEU Varnish Elimination Unit	134
IXU lon eXchange Unit	
Triton-A Triton Dehydration Station [®]	
Triton-E Triton Dehydration Station $^{f R}$	141
NAV North American Vacuum Dehydrator	143
SVD01 Vacuum Dehydrator	145
OXS OXiStop LID Series	147
Section 3: Appendix	
Replacement Elements	
Comparison Photographs for Fluid Contamination Class	151
Contamination Types	
Contamination Classification According to NAS 163801/1964	154
Contamination Classification According to SAE AS 4059(D)	154
Contamination Classification According to ISO 4406:1999	
Viscosity Charts	
FluMoS FluidMonitoring Software	
Reference ListIns	side Back Cover

Overview of Schroeder's Approach to Advanced Fluid Conditioning Solutions[®]

Contamination and degraded fluid quality cause inefficient operation, component wear, and eventually failures in all hydraulic and lubrication systems. The products in this catalog are the tools that are needed to prevent such occurrences. Schroeder recommends a three step approach to controlling contamination in any system:

Introduction

Assess the Fluid System's Health

Assess the fluid system's health

Start by gathering complete information on the system.

This includes:

- A list of the most critical components
- The manufacturer's recommended ISO class for each component
- The type of oil being used
- Flow rate & operating pressure
- Fluid temperature & ambient temperature
- System's operational characteristics
- Details on all current filters in the system
- Solid contamination levels (ISO class)
- Water content levels

AMFS

Recommend and implement Advanced Fluid Conditioning Solutions[®] Next, specify your recommendations for upgrading the current filtration, and adding supplementary filtration:

- Pressure filters
- Return line filters
- Manifold cartridge/circuit protector filters
- Element micron rating
- Reservoir breathers or filler breathers
- Strainer baskets
- Addition of offline filtration loop
- Use of portable filters for filling/temporary offline loops
- Sufficient water removal protection
- Proper fluid monitoring devices

A shift

Recommend and implement Advanced Fluid Conditioning Solutions®

X-Skids

Monitor, maintain, and extend the service life

Finally, use reliable methods for continuous monitoring of the fluid conditions including:

- Solid contamination
- Water content
- Additive depletion
- Element clogging
- Periodic detailed analysis of actual fluid samples
- Portable filters for correcting unacceptable levels

Fluid Care Center: Multi-Pass Test Stand

Monitor, Maintain, and Extend the Service Life

Overview of Schroeder's Approach to Advanced Fluid Conditioning Solutions®

Savings Realized by Proper Contamination Control The money invested in contamination control can easily be justified when the resulting machine availability increases significantly. The graph below illustrates that there is a range in which this investment really pays off.

Savings Calculation Example

This example demonstrates how to calculate the potential savings that will be realized by implementing a proper fluid service program.

	Example	Your Data
Number of Machines	50	a
Operating Hours per year	5,000	b
Current Availability	92%	c
Downtime Costs per hour	\$60	d
Total Downtime Costs	\$1,200,000	e = [a x b x (100-c) x d]
Downtime costs due to:		100
Mechanical/electrical failures (65%)	\$780,000	f (e x .65)
Hydraulic failures (35%) of which:	\$420,000	g (e x .35)
70% is due to the fluid	\$294,000	h (g x .70)
30% is caused by other faults	\$126,000	i (g x .30)
Total	\$264,600	j (h x .90)

Schroeder Fluid Service can return 90% of the fluid related downtime costs

Overview of Schroeder's Approach to Advanced Fluid Conditioning Solutions[®]

- Bottle sampling kits
- Complete analysis kits

Figure 3. Microscopic Particulate Comparison

Overview of Schroeder's Approach to Advanced Fluid Conditioning Solutions®

1. Starting at the left hand column, select the most sensitive component used in the system.

2. Move right to the column that describes the system pressure and conditions.

3. Here you will find the recommended ISO class level, and recommended element micron rating.

	Low/Medium Pressure Under 2000 psi (moderate conditions) (I se		High Pre 2000 to 2 (low/medit severe cond	essure 999 psi um with ditions ¹)	Very Higl 3000 psi (high pre severe co	h Pressure and over ssure with nditions ¹)
	ISO Target Levels	Micron Ratings	ISO Target Levels	Micron Ratings	ISO Target Levels	Micron Ratings
Pumps						
Fixed Gear or Fixed Vane	20/18/15	20	19/17/14	10	18/16/13	5
Fixed Piston	19/17/14	10	18/16/13	5	17/15/12	3
Variable Vane	18/16/13	5	17/15/12	3	N/A	N/A
Variable Piston	18/16/13	5	17/15/12	3	16/14/11	3
Valves						
Check Valve	20/18/15	20	20/18/5	20	19/17/14	10
Directional (solenoid)	20/18/15	20	19/17/14	10	18/16/13	5
Standard Flow Control	20/18/15	20	19/17/14	10	18/16/13	5
Cartridge Valve	19/17/14	10	18/16/13	5	17/15/12	3
Proportional Valve	17/15/12	3	17/15/12	3	16/14/11	3 ²
Servo Valve	16/14/11	3 ²	16/14/11	3 ²	15/13/10	3 ²
Actuators						
Cylinders, Vane Motors, Gear Motors	20/18/15	20	19/17/14	10	18/16/13	5
Piston Motors, Swash Plate Motors	19/17/14	10	18/16/13	5	17/15/12	3
Hydrostatic Drives	16/15/12	3	16/14/11	3 ²	15/13/10	3 ²
Test Stands	15/13/10	3	15/13/10	3 ²	15/13/10	3 ²
Bearings						
Journal Bearings	17/15/12	3	N/A	N/A	N/A	N/A
Industrial Gearboxes	17/15/12	3	N/A	N/A	N/A	N/A
Ball Bearings	15/13/10	3 ²	N/A	N/A	N/A	N/A
Roller Bearings	16/14/11	3 ²	N/A	N/A	N/A	N/A

1. Severe conditions may include high flow surges, pressure spikes, frequent cold starts, extremely heavy duty use, or the presence of water

2. Two or more system filters of the recommended rating may be required to achieve and maintain the desired Target Cleanliness Level.

Fluid Contamination Management Basics

Various types of contamination occur in fluid power systems: gaseous (e.g. air), liquid (e.g. water) and solid contaminants. An overview of the various contamination types is shown in the following diagram (Figure 4).

Solid contamination is subdivided into three groups: extremely hard, hard and soft particles (see Figure 4). Extremely hard particles can cause substantial damage in fluid power systems if they are not removed as quickly as possible. Preventive measures can reduce the ingress of contaminants in systems.

Figure 4. Types of Contamination

Hard particles are frequently listed separately in specifications. Maximum values are specified for the longest dimension these hard particles may have, e.g. largest abrasive particle: max. 200 μ m or 200 x 90 μ m or number of particles > 200 μ m.

Not only do the hardness of contamination particles play a role but also their number and size distribution do as well.

The particle size distribution in new systems is different from that of systems that have been in operation for a number of hours. In new systems, there is an accumulation of coarse contaminants up to several millimeters long, which are then increasingly reduced in size in the course of operation or eliminated by filtration. After several hours of operation most particles are so small that they are no longer visible to the naked eye.

When commissioning fluid power systems there is additional particulate contamination by virtue of abrasive wear in which rough edges are worn away through running-in. Contamination management can't prevent this ingress of contaminants; however, if basic contamination is lower, there is less abrasion during system startup.

Fluid Contamination Types

Definition of Fluid Contamination Management and the Technical Cleanliness Process

Definitions

Fluid Power System A power transmission system that uses fluids to transmit power Basic Contamination

Quantity of contamination present subsequent to assembly Ingress Contamination Particulate ingressed during operation of a fluid power system

Initial Damage | "Start-Up" Damage to component surfaces caused during function testing/commissioning/assembly of systems

Fluid Contamination Monitoring Analysis of a fluid power system measures ingressed particulate levels

Online Measurement (Real Time Monitoring) Measurement process which the sample to be analyzed is process fed to a measurement device directly from the system

Offline Measurement

Measurement process in which the sample is taken from the process system and analyzed elsewhere, e.g. taking an oil sample and sending it in to a laboratory

Contamination Management and Technical Cleanliness Monitoring and optimization of cleanliness, from component design to the component assembly, to the assembly and operation of the system

Technical Cleanliness

As Figure 5 shows, the level of contamination without using the Technical Cleanliness Process is higher throughout system operation as compared to a system in which the Technical Cleanliness Process is employed, the result being that more initial damage may be caused to surfaces.

Figure 5. Cleaning of a Fluid Power System With and Without Contamination Management

Microscope images show typical particle samples, containing fine particles, as they occur in fluid power systems. (Figure 6)

Figure 6. Typical Particle Samples

An average healthy human eye can see items down to approximately 40 μ m in size. Particle analyses are conducted using a microscope or particle counters in fluid power systems employing the light extinction principle. (Figure 7)

Technical Cleanliness and Contamination Management Basics

Consequences of Particulate Contamination in Fluid Power **Systems**

Figure 7. Sizes of Known Particles in Inches and Microns

Particulate contaminants circulating in fluid power systems cause surface degradation through general mechanical wear (abrasion, erosion, and surface fatigue).

This wear causes increasing numbers of particles to be formed, the result being that wear increases if the "chain reaction of wear" is not properly contained (by reducing contamination).

Figure 8. Factors Affecting Roller Bearing Life

Badial clearance of the piston ring Low pressure

Figure 9. Examples of Wear to Movable Surfaces

Generally speaking, integrated system filtration concepts are not designed to adequately deal with large guantities of dirt as incurred with these operations:

failure as well.

bores occurs.

- Component machining
- System repair work

Gaps grow larger, leakage oil flows

(e.g. of pumps) decreases. Metering

edges are worn away, thus resulting

The chain reaction of wear during

systems has to be interrupted by

the everyday operation of hydraulic

properly designed and dimensioned

filter systems. However, the measure of

security afforded the user is deceptive as highly damaging contaminants seep in during component and system

assembly and system installation. This ingress of contaminants not only can

cause preliminary damage to system

components but also premature

in control inaccuracies. In some cases, blockage of control ducts or nozzle

increase in size, and operating efficiency

- Commissioning System assembly

- System filling

A study conducted by the University of Hanover describes the factors impacting the fatigue life of roller bearings as follows: "The quantity of contamination in the lubricant is described by the particle quantity and size. Combining this with particle hardness and geometry results in the type and extent of damage to raceways, with the extent also being affected by the elastoplastic behavior of the material. The amount of damage is determined by the quantity of particles in the lubrication gap and the rollover frequency. Continued rollover leads to cracking, which in the form of fatigue damage (pitting) leads to roller bearing damage (bearing failure)."

In practice ball bearings with their punctiform contact are shown in most cases to be less sensitive to particulate contamination than roller bearings with their linear contact. Friction bearings with their larger lubrication gaps are the least sensitive to particulate contamination.

Technical Cleanliness and Contamination Management Basics

Figure 10 provides an overview of the most common gap sizes illustrated in Figure 11. Comprehensive studies of particle distributions on components and in hydraulic systems have shown that at the beginning of a system's life, i.e. during assembly and commissioning, the particles are larger than during subsequent operation.

These large particles – up to several millimeters in size – can cause spontaneous outages, valve blockages, substantial preliminary damage to pumps, and destruction of seals and gaskets followed by leakage.

Active contamination management enables this rate of damage to be reduced and subsequent costs accordingly cut, i.e.:

- Costs caused by production stops
- Costs caused by delays in commissioning systems
- Warranty costs
- Reworking costs
- Costs incurred by longer testing periods since a flushing cycle is required to remove integral contamination

Contamination management counters the situation as follows: In new systems the individual components are brought to a uniform cleanliness level, the filling fluid is kept at a defined cleanliness level, as is the fluid during system operation.

Component	Typical Critical Clearance (µm)
1. Gear Pump (J1, J2)	0.5 - 5
2. Vane-cell Pump (J1)	0.5 - 5
3. Piston Pump (J2)	0.5 - 1
4. Control Valve (J1)	5 - 25
5. Servo Valve (J1)	5 - 8

Figure 10. Common Gap Sizes

Figure 11. Common Gaps Illustrated

Figure 12. Destroyed raceway of a ball bearing caused by particulate contamination

Figure 13. Contaminate embedded in the surface of a friction bearing

Classification of Particulate Contamination in Fluids and Parts Cleanliness Measurement Using Gravimetric Analysis

The objective of the procedures described below is to enable a reproducible classification of particulate contaminants in fluids.

Currently there are four procedures for classifying particulate contaminants in fluids: ISO 4405, ISO 4406:1999, NAS 1638, SAE AS 4059(D) (see chart below)

Standard	ISO 4405	ISO 4406:1999	NAS 1638	SAE AS 4059(D)	
Application	Highly contaminated media, e.g. washing media, machining fluids	Hydraulic fluids Lubrication oils	Hydraulic fluids Lubrication oils	Hydraulic fluids Lubrication oils	
Parameters	(mg/liters of fluid)	Number of particles > 4 µm(c) > 6 µm(c) > 14 µm(c)	Number of particles 5 - 15 μm 5 - 25 μm 25 - 50 μm 50 - 100 μm > 100 μm	Number of particles > 4 μ m(c) > 6 μ m(c) > 14 μ m(c) > 21 μ m(c) > 38 μ m(c) > 70 μ m(c)	
Analysis Methods	In this lab method, a known volume of the fluid undergoing analysis is filtered through a prepared membrane,which is then weighed	 Manual evaluation: The fluid undergoing analysis is filtered through a prepared membrane and the cleanliness class (contamination rating) estimated or counted by hand using a microscope. Automated particle counting: The fluid undergoing analysis is conducted through a particle counter, which tallies the particle fractions. 			
Remarks	Very time-consuming method	 Manual evaluation: Very time-consuming, not very exact. Automated particle counting: Result available almost immediately. 			

Gravimetric Analysis Methods

This international standard describes the gravimetric method for determining the particulate contamination of hydraulic fluids.

Basic Principle

A known volume of fluid is filtered through one or two filter disks using vacuum action and the weight differential of the filter disks (upstream and downstream of filtration) measured. The second membrane is used for evaluating accuracy.

In order to determine the gravimetric contamination of the fluid, a representative sample has to be taken from the system. ISO 4405 describes the cleaning procedure for the equipment being used. It also describes the preparatory procedures for the analysis membranes.

The membranes are flushed with isopropanol prior to use, dried in a drying oven until they achieve a constant weight, and then cooled in a defined dry environment. It is important that cooling takes place in a defined dry environment, otherwise the membrane absorbs moisture from the surroundings, thus skewing the final result.

Afterwards the membrane is weighed and this value recorded as m(T).

The membranes are then fixed in the membrane retainer and the fluid undergoing analysis is filtered. This is followed by flushing off the contaminant on the membrane using filtered solvent to completely remove the contaminant. When analyzing oil-laden fluids it is important that the remaining oil is completely flushed off the membrane.

This is followed by drying the membrane, cooling, and weighing it (as described above). The measured value is now recorded as m(E).

Gravimetric contamination is calculated as follows: M(G) = m(E) - m(T)

ISO 4405

"Hydraulic Fluid Power – Fluid Contamination – Determining Particulate Contamination Employing Gravimetric Analysis Methods"

ISO 4406 Particle Counting in Fluid Systems

In ISO 4406, particle counts are determined cumulatively, i.e. > 4 μ m(c), > 6 μ m(c) and > 14 μ m(c) (manually by filtering the fluid through an analysis membrane or automatically using particle counters) and allocated to measurement references.

The goal of allocating particle counts to references is to facilitate the assessment of fluid cleanliness ratings.

Figure 14. Microscopic Examination of an Oil Sample Magnification 100x (ISO 18/15/11)

Note: increasing the measurement reference by 1 causes the particle count to double.

Example: ISO class 18 / 15 / 11 says that the following are found in 1 ml of analyzed sample:

1,300 - 2,500 particles	> 4 µm(c)
160 - 320 particles	> 6 µm(c)
10 - 20 particles	>14 µm(c)

Recommended Cleanliness Levels (ISO Codes) for Fluid Power Components

Components	Cleanliness Levels (ISO Code) 4 μ(c)/6 μ(c)/14 μ(c)
Gear Pump	19/17/14
Piston Pump/Motor	18/16/13
Vane Pump	19/17/14
Directional Control Valve	19/17/14
Proportional Control Valve	18/16/13
Servo Valve	16/14/11

The above is based on data shown in various hydraulic component manufacturers' catalogs. Contact Schroeder for recommendations for your specific system needs.

Allocation of Particle Counts to Cleanliness Classes

No. of Pa	articles/ml	Cleanliness
Over	Up to	Class
1,300,000	2,500,000	> 28
640,000	1,300,000	> 27
320,000	640,000	> 26
160,000	320,000	> 25
80,000	160,000	> 24
40,000	80,000	> 23
20,000	40,000	> 22
10,000	20,000	> 21
5,000	10,000	> 20
2,500	5,000	> 19
1,300	2,500	> 18
640	1,300	> 17
320	640	> 16
160	320	> 15
80	160	> 14
40	80	> 13
20	40	> 12
10	20	> 11
5	10	> 10
2.5	5	> 9
1.3	2.5	> 8

NAS 1638 Particle Counting in Fluid Systems

Like ISO 4406, NAS 1638 describes particle concentrations in liquids. The analysis methods can be applied in the same manner as ISO 4406:1987.

In contrast to ISO 4406, certain particle ranges are counted in NAS 1638 and attributed to measurement references.

The following table shows the cleanliness classes in relation to the particle concentration analyzed.

			Partic	le Size (µm)		
-		5-15	15-25	25-50	50-100	>100
-			No. of Part	icles in 100 ml Samp	le	
	00	125	22	4	1	0
	0	250	44	8	2	0
	1	500	89	16	3	1
	2	1,000	178	32	6	1
	3	2,000	356	63	11	2
Class	4	4,000	712	126	22	4
ess (5	8,000	1,425	253	45	8
nline	6	16,000	1,850	506	90	16
Clea	7	32,000	5,700	1,012	180	32
0	8	64,000	11,600	2,025	360	64
	9	128,000	22,800	4,050	720	128
	10	256,000	45,600	8,100	1,440	256
	11	512,000	91,200	16,200	2,880	512
	12	1,024, 000	182,400	32,400	5,760	1,024

Increasing the class by 1 causes the particle count to double on average.

The particle counts of class 10 are bold-faced in the above table.

Figure 15. Microscopic Examination of an Oil Sample Magnification 100x (NAS 10)

SAE AS 4059(D) Particle Counting in Fluid Systems

SAE AS 4059(D)

Like ISO 4406 and NAS 1638, SAE AS 4059(D) describes particle concentrations in liquids. The analysis methods can be applied in the same manner as ISO 4406:1999 and NAS 1638.

The SAE cleanliness classes are based on particle size, number and distribution. The particle size determined depends on the measurement process and calibration; consequently the particle sizes are labeled with letters (A - F).

The SAE cleanliness classes can be represented as follows:

- Absolute particle count larger than a defined particle size *Example:* Cleanliness class according to AS 4059:6 The maximum permissible particle count in the individual size ranges is shown in the table in boldface. Cleanliness class according to AS 4059:6 B Size B particles may not exceed the maximum number indicated for class 6. 6 B = max. 19,500 particles of a size of 5 μm or 6 μm (c)
- Specifying a cleanliness class for each particle size *Example*: Cleanliness class according to AS 4059: 7 B / 6 C / 5 D Size B (5 μm or 6 μm(c)): 38,900 particles / 100 ml Size C (15 μm or 14 μm(c)): 3,460 particles / 100 ml Size D (25 μm or 21 μm(c)): 306 particles / 100 ml
- Specifying the highest cleanliness class measured *Example:* Cleanliness class according to AS 4059:6 B – F The 6 B – F specification requires a particle count in size ranges B – F. The respective particle concentration of cleanliness class 6 may not be exceeded in any of these ranges.

			4			
Size ISO 4402 Calibration or Visual Counting	> 1 µm	> 5 µm	> 15 µm	> 25 µm	> 50 µm	> 100 µm
Size ISO 11171, Calibration or Electron Microscope**	> 4 µm _(C)	> 6 µm _(C)	> 14 µm _(c)	> 21 µm _(c)	> 38 µm _(c)	> 70 µm _(c)
Size Coding	А	В	C	D	E	F
000	195	76	14	3	1	0
00	390	152	27	5	1	0
0	780	304	54	10	2	0
1	1,560	609	109	20	4	1
2	3,120	1,220	217	39	7	1
3	6,250	2,430	432	76	13	2
4	12,500	4,860	864	152	26	4
5	25,000	9,730	1,730	306	53	8
6	50,000	19,500	3,460	612	106	16
7	100,000	38,900	6,920	1,220	212	32
8	200,000	77,900	13,900	2,450	424	64
9	400,000	156,000	27,700	4,900	848	128
10	800,000	311,000	55,400	9,800	1,700	256
11	1,600,000	623,000	111,000	19,600	3,390	1,020
12	3,200,000	1,250,000	222,000	39,200	6,780	

Maximum Particle Concentration* (particles / 100 ml)

Table shows the cleanliness classes in relation to the particle concentration determined.

*Particle sizes measured according to the longest dimension.

**Particle sizes determined according to the diameter of the projected area-equivalent circle.

Fluid Condition Field Analysis Tools

A representative sample is taken of the fluid and analyzed as follows:

1. Manual procedure according to ISO 4407 (Hydraulic fluid power – Fluid contamination – Determination of particulate contamination by the counting method using a microscope).

ISO 4407 contains a description of a microscopic counting method for membranes. 100 ml of the sample undergoing analysis is filtered through an analysis membrane featuring an average pore size of < 1 μ m and square markings.

The standard also describes the cleaning procedure and maximum particle count of the negative control.

After the analysis membranes are dried, 10, 20 or 50 squares are counted depending on the size of the particles, followed by adding the values and extrapolating to the membrane diameter. See figure 16.

The manual count of the particles is done in the "old" levels of > 5 μ m and > 15 μ m since the longest dimension of a particle is counted in ISO 4407 yet the diameter of the area-equivalent circle is counted in the "new" ISO 4406:1999. As described above, the reference values obtained for this count correspond to the reference values of the "new" evaluation.

This counting method can only be used for very clean samples. Generally speaking, the cleanliness classes are estimated on the basis of reference photographs or the samples are automatically counted.

Figure 16.

Figure 17.

2. Automated particle counting

Below follows a description of how common particle counters employing the light extinction principle function.

Figure 17 shows a simplified rendering of the measurement principle employed in the light extinction principle.

The light source transmits the light (monochromatic light for the most part) onto an optical sensor, which emits a specific electrical signal.

A shadow is created on the photodiode if a particle (black) comes between the light source and the photodetector. This shadow causes the electric signal emitted by the sensor to change. This change can be used to determine the size of the shadow cast by this particle and thus the particle size.

This procedure enables the cleanliness classes according to ISO 4406:1987, ISO 4406:1999, NAS 1638 and SAE AS 4059(D) to be accurately determined.

The "noise" involved in this measurement principle is extraneous liquids and gases which cause the light beam to be interrupted and thus be counted as particles.

The particle counter should be calibrated according to ISO 11943 (for ISO 4406:1999).

Figure 18. Schroeder Industries offers seven products (see Figure 18) that include particle monitoring services: TPM TestMate® Particle Counter, TIM TestMate® In-Line Counter, TCM TestMate® Contamination Monitor, TMU TestMate® Monitoring Unit, CTU TestMate® Contamination Test Unit, the FS Filtration Station® and Asset Management Filtration System®. Product information for all of these is included in this catalog.

Procedure in Evaluating Fluid Samples

According to ISO 4406:1999, NAS 1638 and SAE AS 4059(D)

Determining the Residual Dirt Quantity of Components and Technical Cleanliness

Determining the residual dirt quantities present on components can be done by employing quantitative and qualitative factors.

Quantitative: mg/component

- mg/surface unit (oil-wetted surface)
- mg/kg component weight no. of particles > x µm/component
- no. of particles > x µm/surface unit (oil-wetted surface)
- Qualitative: Length of largest particle (subdivision into hard/soft)

Components with easily accessible surfaces are components in which only the outer surface is of interest for the most part when performing residual dirt analyses. There are exceptions e.g. transmission and pump housings, as the internal surface is of interest. These components belong to group 1 and their surfaces are not easily accessible in most cases.

Components in which the inner surfaces are examined or pre-assembled assemblies belong to group 2.

There are two methods that can be used to determine the residual dirt of group 1 components.

Ultrasonic Method The ultrasound method involves submitting the components to an ultrasonic bath, exposing them for a defined period of time at a defined ultrasonic setting and bath temperature. The particulate contamination is loosened by the exposure and then flushed off the component using a suitable liquid.

The particle dispersion in the flushing liquid obtained in this manner is analyzed according to specified evaluation methods.

The ultrasonic energy setting and the duration of exposure have to be indicated in reporting the result. The ultrasonic procedure is particularly suitable for small components in which all surfaces have to be examined. *Cast components and elastomers should not be subjected to ultrasonic washing if possible. A risk is posed here by the carbon inclusions in the cast piece being dissolved, thus skewing the results.* These effects have to be evaluated prior to performing an ultrasonic analysis.

Flushing Method

Components with easily accessible surfaces or components in which only surface parts have to be examined are analyzed using the flushing method. This method involves flushing the surface undergoing analysis in a defined clean environment using an analysis fluid, which also has a defined cleanliness. A "negative control" or basic contamination control is performed prior to analysis in which all the surfaces of the environment, e.g. the collecting basin, are flushed and the value obtained reported as the basic contamination of the analysis equipment. The flushing fluid is then analyzed using the specified evaluation methods.

The darker areas in Figure 19 are the flushing areas; those to the left and lighter are the designated analysis area. In reality these two circuits are configured using suitable valves in such a manner that switchover can be done between the two storage tanks. The figure represents a simplified circuit diagram. The analysis fluid is subjected to a pressure of *approximately* 58 - 87 psi (4 - 6 bar) and conveyed through the system filter and the spray gun into the analysis chamber. The system filter ensures that the analysis fluid sprayed on the surface being examined has a defined cleanliness. The particle-loaded fluid *collects in the collecting basin* and is filtered through the analysis membrane via vacuum action. The membrane is then evaluated according to the analysis methods described on the following pages.

Shaking Method

The shaking method is very rarely used, as it is very difficult to reproduce manually. However, results are reproducible when automatic shakers such as those used in chemical laboratories are employed. The analyzed components are components subject to wear whose inner surfaces are to be analyzed (e.g. pipes, tanks). The important thing is that the particles are flushed out of the inside of the components after being shaken.

The table on the following page shows a comparison of the various methods for analyzing components and assemblies.

18 SCHROEDER INDUSTRIES

Testing Methods Comparison

	Flushing Method	Ultrasonic Method	Method
How Performed	Components are flushed with the analysis fluid in a defined clean environment.	Components are exposed to an ultrasonic bath and are then flushed with the analysis fluid.	Compariso
Applications	Components in which only surface parts have to be examined and components in which ultrasound may damage the surfaces.	Small components and components in which all surfaces are to be analyzed (the component size depends on the ultrasonic bath).	
	Components with a simple design and with easily accessible surfaces.		
Pros	Analysis can be performed quickly	Reproducibility	
Cons	Reproducibility	Analysis takes a long time	
	Standards are not yet available	The energy acts on the surface undergoing analysis	
	(currently in preparation)	The surface has to be flushed No valid standards	

Evaluating particle-laden flushing fluids can be done according to various criteria. Gravimetric analysis is useful for heavily contaminated components, whereas particle counts in various size ranges are useful for very clean components.

The following table provides an overview of the individual evaluation methods.

	Manual Methods		Automated Methods	
	Gravimetric method [mg/m ²]	Counting of particles on the analysis membrane [no. of particles > x µm/ m ²]*	Counting of particles on the analysis membrane [no. of particles > x µm/m ²]*	Counting of particles on the analysis membrane [no. of particles > x µm/m ²]*
	The particle-laden fluid is	The particles on the particle-laden fluid are counted using an automatic particle counter		
How Performed	The analysis membrane is weighed before and after analysis and the gravimetry computed on the basis of the difference between the measured values	The number of particles in the individual size ranges are estimated or counted < 100 µm estimated > 100 µm counted	The analysis membrane is placed under a microscope and evaluated using a software tool. This soft- ware records the light-dark contrasts on the membrane and interrupts them as particles.	
Applications	Samples exhibiting contamination >10 mg	Samples featuring high a content of coarse contamination. Often combined with gravimetric evaluation.	Samples featuring a low contamination content < 5 mg	Preferred for very clean components. When high dirt content is involved, the sample has to be diluted in order to perform counting.
Standard	ISO 4405	ISO 4407		ISO 11500
Advantages	Material types can also be analyzed. An overview can be quickly obtained of the largest particles. Air and extraneous liquids do not pose a problem (as long as no deposits form on the membrane). Can be used for large particle quantities			Analysis can be performed quickly, can be integrated in process chain as on-line method, detection of small quantities of particles possible, measurement range selectable (2-400µm). Accurate measurement method
Disadvantages	Takes a long time (min. 1 h) Lab Method	Takes a long time No. of particles <100 μm estimated Lab Method	Depending on the analysis accuracy this method can take a very long time. Light particles are not interrupted. Light-Dark contrast is manually selected in cases. The diameter of the area-equivalent circle is measured (=> result is not identical to visual appearance)	The sample has to be prepared (e.g. the sample might have to be diluted). Generally speaking, this is a statistical method providing for sufficient accuracy.
Application	Lab Method Used as a control for indirect measurement techniques (e.g. off-line process control in test stations)		Lab Method	On-line process control in manufacturing and assembly. Can also be used in labs

Evaluation Methods

Evaluation Methods

The following table provides an overview of applications of the analysis and evaluation methods.

Evaluation		Grav	Gravimetry Particle Counting		Particle Counting	
Analysis Method		Flushing	Ultrasonic Method	Flushing	Ultrasonic Method	Function Testing
Simple Components	easy-to-access surfaces; gears	U	U	U	U	NU
Components	internal surfaces pipes, tanks	U	NU	U	NU	CU*
Complex Components	components featuring various bore holes or ducts; control plates	CU*	NU	CU*	NU	U
Simple Systems	surface is to be analyzed immersed sensors	U	U	U	U	NU
Systems	internal surfaces rails of common rail systems	CU*	NU	CU*	NU	U
Complex Systems	valves, pumps	CU*	NU	CU*	NU	U

* Must be ensured that the particles dislodged from the component can be flushed away.

U = Usable

CU = Conditionally usable

NU = Not usable

Patch Test Kit

Schroeder's EPK Patch Test Kit (shown to the right) provides the tools needed to pull contaminated fluid through a patch and compare the resulting patch under a microscope to representative photos of various contamination levels to determine the fluid's ISO level.

Advanced Technology

The Asset Management Filtration Station[®] (AMFS) is a complete fluid management system designed to manage fluid cleanliness, so that the greatest return of that asset is achieved. The AMFS is an all-in one system that monitors your fluid condition, filters out contaminants and tracks all the necessary data needed for trend analysis and record keeping by asset number or name.

Contamination Monitoring

The reliability of hydraulic systems can be impacted heavily by particulate contamination during the running-in phase. The risk of outages during the first minutes or hours of operation is particularly high as the foreign particles introduced or created during the assembly process are still relatively large and can thus cause sudden outages. During continued operation, these large particles are ground into smaller ones, the result being that damage can be caused to the surfaces of system components during this crushing process. The consequences are leakage, degraded output and efficiency, or a shortening of the component's service life. In many cases, microfiltering is used to quickly clean the system fluid during commissioning.

This is where contamination monitoring is key in the manufacture and assembly of these systems. By implementing contamination management a major portion of particulate contamination introduced during manufacture and assembly can be removed. The result is cost savings by virtue of smaller performance deviations on test stands caused by the sudden clogging of particles in sensitive system components plus lower costs associated with warranty and non-warranty courtesy work. *For more information, refer to page 31.*

Below follows a description of the goal, design and performance of a process audit.

Contamination monitoring extends to checking the cleanliness status of all manufacturing and assembly processes considered relevant in this connection. Proper preparation and informing all those involved are key in contamination monitoring.

Figure 20. Schematic Excerpt of a Manufacturing Line

First, the objective of contamination monitoring is specified, e.g.

- Determining the current situation
- Checking fluctuations between batches
- Checking washing processes
- Comparing the target with the actual situation
- Determining the sampling point

During the planning and design phase, the sampling points for components and taking liquid samples are determined using a production plan or operation sheet. The employees to be involved in contamination monitoring are informed of the objectives and procedures.

NOTE:

Manufacturing has to continue in the same manner, meaning that no additional cleanliness levels, etc. are to be integrated. The purpose of contamination monitoring is not to check the quality produced by the employees but rather determining the causes and sources of contamination.

Figure 20 above shows the manufacturing processes and the corresponding sampling points. However, in actuality sampling is more comprehensive, i.e. the description includes the number of the Minimess fittings at which sampling is done, for example.

A representative sampling is taken of the fluids and components; the samples are stored so as to prevent any further contamination. Special sampling bottles are used for the fluid samples; the components are stored in defined clean packaging.

The analysis is performed in accordance with the methods specified on page 18 and the findings recorded.

Properly trained or experienced individuals while inspecting the manufacturing and assembly line can detect some sources of contamination. That is why such an inspection is conducted during the audit. The findings made during inspection are then compared with the results on hand.

Planning and Design

How Sampling is Done

Inspection of the Manufacturing and Assembly Line

Analyzing the Data

The contamination monitoring results describe the condition at the time the sampling is done. The findings might look like this:

Figure 21. Housing Processing

This chart shows an excerpt of the housing manufacturing process. The component samples are taken upstream and downstream of the washing station. The findings show that the washing station performs well and that it is well positioned. Subsequent storage is not being done properly as the particulate contamination is almost double.

Drafting a Cleanliness **Specification**

By applying a cleanliness specification to components and the system it can be ensured that as-supplied quality is constant.

The following should be kept in mind when drafting a cleanliness specification:

- State of the art
- Benchmarking what do others do?
- Inclusion of previous experience if available
- Defining and implementing contamination management as an "official project"
- Inclusion of all hierarchy levels
- Accurate documentation of how the specification was developed
- Developing clear-cut definitions

Next, it has to be determined which components in the system are the most sensitive. Frequently, it is not possible to achieve the same level of cleanliness throughout the system during assembly.

If suitable, filtration takes place upstream of the sensitive components. An area of low-contaminationsensitive components can be defined upstream of this filtration and an area of highly contaminationsensitive components downstream of the filter.

These individual components or system areas should be subdivided into sensitivity areas.

Category	Designation	Description
А	Low particle-sensitivity	For the most part low-pressure systems with large gap tolerances
В	Particle-sensitive	Low-pressure systems with small gap tolerances
С	High particle sensitivity	High-pressure systems with small gap tolerances and with exacting demands made of safety and security systems

A maximum particulate contamination value is specified for each of these cleanliness categories.

A car motor illustrates this subdivision below:

Category	Motor Area
А	Air / Coolant water circuit
В	Low-pressure oil circuit
С	Diesel direct injection / High-pressure oil circuit

In addition, the fluid cleanliness ratings of the individual system and process fluids are defined.

SCHROEDER INDUSTRIES 22

Analyzing the Data

The following parameters are defined in the cleanliness specifications for the components:

- 1. Goal of the cleanliness specification
- 2. Applicability (system designation)
- 3. Extent of inspection and testing; inspection and testing cycles
- 4. Sampling
- 5. Analysis method
- 6. Evaluation method
- 7. Accuracy
- 8. Analysis fluids to be used
- 9. Documentation
- 10. Limit values

This specification has to be made for each individual system; consequently a few things are discussed which have to be borne in mind.

Work instructions concerning sampling, analysis and evaluation methods should be described in detail so as to ensure that sampling is always done in a uniform manner. In addition, the analysis results depend on the analysis fluid and method, particularly when it comes to component analysis. Documentation should be done using forms so that all the results are readily accessible.

Contamination Management						
System	Power Steering	Analysis date	Jan. 31, 2001			
Component analy	Component analysis					
Component	Rack	Sampling point	After washing 1			
Part No.	Xx1235	Sample taken by	Joe Smith			
Batch size	1	Sampling date	Jan. 30, 2001			
Analysis method	Ultrasonic	Lot designation	01-2001			
Analysis fluid	COLD-02	Analysis fluid vol.	1,500 ml			
Negative value	.02 mg	Membrane filter rating	7 µm			
Evaluation method	d					
In-line particle counting	Automated particle counting of the analysis fluid	Automated particle counting of the membrane	Manual particle counting			
			Х			
	х					
Gravimetry	8	mg/component				
Largest abrasive particle	350	μm				
	No. of particles / component					
	> 50 µm	> 100 µm	> 200 µm			
Actual value	100	10	3			
Limit			0			
System Fluid						
System	Washing 1					
Sampling point	Flushing bath					
Sample taken by	Joe Smith					
Sampling date	Jan. 30, 2001					
Measurement met	thod					
In-line particle counting	Automated particle counting of the analysis fluid	Automated particle counting of the membrane	Manual particle counting			
			х			
ISO 4406	22/20/18	NAS 1638				
Largest abrasive	300 µm					
particle						
Signature:		Date:				
— Example of a form for entering findings						

1. Goal of the cleanliness specification

The goal in implementing this cleanliness specification is to achieve a constant level of cleanliness for system X.

2. Applicability (system designation)

This specification applies to system X including its series A, B, and C. It extends to all components whether sourced or manufactured in house. It also specifies the system fluids of system X with regard to their cleanliness.

3. Extent of inspection & testing; inspection & testing cycles

5 samples a month of each component are to be taken and analyzed. If the supplier parts achieve a constant cleanliness value after 6 months, the sampling cycle can be extended to every 2 or 3 months. An analysis of the entire (assembled) system is to be done at least once a week prior to delivery. Checking of the fluid cleanliness should be done on a continuous basis.

4. Sampling

Sampling of components is to be done at receiving and is to be representative. Samples should be packed in a dust-tight manner and sent into the laboratory. The fluid samples are to be taken at the sampling points indicated in the inspection and testing plan.

Example of a Cleanliness Specification

Establishing

Cleanliness

Specifications

SCHROEDER INDUSTRIES 23

Analyzing the Data

Example of a Cleanliness Specification *continued*

5. Analysis method

The flushing method should be used for component analysis. The surfaces of the component are flushed in a clean environment using x ml of the test fluid (XY) which has a cleanliness of xx, under a pressure of z psi as specified by the inspection and testing plan. The flushed-off particulate contamination is collected on an analysis membrane and subjected to gravimetric analysis. Representative samples are taken of the system fluids at the specified sampling points. All testing parameters are specified; the duration of testing, what is tested, the pressures, and speeds. When conducting static inspection and testing make sure that a flushing effect is present so that the cleanliness of these components can be determined, (the static pressure test has to be followed by a dynamic flushing process in order to analyze the actual quantity of particles which is flushed out of the component.)

6. Evaluation method

In the component analyses the analysis membrane is dried until it achieves a constant weight, and then cooled in a defined dry environment and weighed. This procedure is repeated subsequent to filtration. The weight differential indicates the "gravimetric contamination" of the component. This is followed by visually examining the analysis membranes through a microscope and measuring the longest particles. Evaluation of the fluid samples is done in accordance with ISO 4405, ISO 4407, ISO 4406:1999 or NAS 1638.

7. Accuracy

The analysis equipment has to be brought to a residual dirt content of 0.2 mg prior to conducting the analysis so that the measurements taken of the component samples are sufficiently accurate. This is determined by performing a negative control, i.e. flushing the equipment without testing. When the result of the analysis drops below 0.5 mg, the batch size is to be increased and thus a mean value of the results computed.

8. Analysis fluids to be used

The following analysis fluid should be used for the component analyses: ABC-XX, with a cleanliness class of 14 / 12 / 9 and no particles > 40 μ m.

9. Documentation

The documentation of the results is done using a result sheet.

10. Limit values

The components are subdivided into 3 cleanliness classes:

Category	Designation	Description
А	Low particle-sensitivity	For the most part low-pressure systems with large gap tolerances
В	Particle-sensitive	Low-pressure systems with small gap tolerances
С	High particle sensitivity	High-pressure systems with small gap tolerances and exacting demands

The following cleanliness specifications apply to each of these classes (fictitious example).

Category	Gravimetry	Particle Sizes
А	20 mg / component	Max. 4 particles > 500 μm Max. size: 400 μm No fiber bundles
В	10 mg / component	Max. 4 particles > 400 μm Max. size: 800 μm Fibers up to 4 mm
С	5 mg / component	Max. 4 particles > 200 μm Max. size: 1,000 μm Fibers up to 2 mm

The transmission components are subdivided into the individual categories.

Group A: crankcase sump.

Group B: intermediate housing, transmission housing, coupling flange

Group C: valve plate, valve housing, centering plate

Fluid samples:

At the end of the test run, the transmission fluid may not fall short a cleanliness rating of 17 / 15 / 13 (c) according to ISO 4406:1999. The system is to be operated using a cleanliness rating of 18 / 16 / 14 (c) according to ISO 4406:1999.

11. Procedure to be followed in the event that the specification is not adhered to

The supplier components are to be returned to the supplier in the event that the specification is not adhered to. If this procedure results in production delays, the components will be cleaned and analyzed by us at the supplier's expense.

Sources of Contamination in the Manufacturing and Assembly of Hydraulic Systems

Particulate contamination can enter a fluid power system in various ways. The main sources of ingression are shown in the following diagram. Some of these sources of contamination can be eliminated in a simple, cost-effective manner.

Figure 24. Sources of Contamination in the Manufacturing of Hydraulic Systems

The ingression of contamination in the manufacturing and assembly of hydraulic systems can be eliminated in a cost-effective manner in various process steps.

Storage and Logistics

When storing and transporting the components and systems care has to be exercised to make sure that they are properly sealed shut or well packed. Transportation and storage packing has to be in keeping with the cleanliness status of the individual components.

Assembly of Systems and Subassemblies

The assembly of these systems is to be done in accordance with system requirements. This means that the assembly and mechanical fabrication areas have to be separated if necessary in order to prevent the ingress of contamination. The assembly stations have to be kept clean to a defined cleanliness and those working in these areas have to wear special, lint-free clothing. The assembly equipment has to be properly cleaned so as to prevent the ingress of dirt here, too.

Raising the Awareness of Employees

In order to achieve the objective of "defined cleanliness of components and systems" it is important that employees at all levels be involved in this process. Frequently, a considerable savings potential is contained in the employees' wealth of ideas and experience — particularly those working at assembly lines and in fabrication.

Experience has shown that when employees are able to identify with the objective being striven for, they are more able to help in implementing it quickly and effectively.

Environment — Air Cleanliness

In some cases it will be necessary to set up a clean room for the final assembly of very contaminationsensitive systems, e.g. fuel systems, brakes shock absorbers, etc. This has to be decided on a case-by-case basis. However, in many cases performing the measures described here suffices.

Generally speaking, particulate contamination is removed from a hydraulic system via filtration. Various types of filters are used depending on the amount and type of contamination.

Belt filter systems or bag filters are used when large quantities of contaminants are involved. These filters have the job of removing the major portion of contaminants from the system. These filter types are also used for pre-filtration purposes.

In most cases, these coarse filters do their job of "removing a lot of dirt from the system" very well. However, microfiltering also has to be done if a constant defined high level of cleanliness of the system fluid is to be ensured.

Whereas microfiltration ensures quality, the job of coarse filtration is to control the quantity of contamination.

Preventing the Ingression of Contamination in the Manufacturing and Assembly of Hydraulic Systems

Removal of Particulate Contamination from Hydraulic Systems (Practical Experience and Components)

Removal of Particulate Contamination

Cleaning System

Individual components are freed of clinging contamination in cleaning systems (particles, remainder of machining or corrosion protection fluids, etc.). Cleaning can be done by employing various mechanical methods (e.g. spraying, flooding, ultrasonic methods) using various cleaning fluids (aqueous solutions or organic solvents). The temperature and duration of cleaning also have a decisive effect on the cleaning effect. These factors have to be carefully matched and optimally tuned in order for a favorable cleaning effect to be achieved in an economical amount of time.

Figure 25. Cleaning Techniques

Various studies of washing processes have shown that some of these for the most part cost-intensive processes aren't worthy of the name. Some people refer to washing processes as "particle distribution processes". This "property" was detected in examinations of components sampled upstream and downstream of a washing process.

Figure 26. Micro-photograph Analysis Membrane: Pipe has been washed and sawed

Figure 27. Micro-photograph Analysis Membrane: After sawing and washing, the pipe is bent and flushed

There are two possible responses in a case like this:

1. Discontinue the washing process when component cleanliness becomes worse after washing than before.

Advantage: temporary cost savings

The best alternative:

2. Optimize the process. The following should particularly be borne in mind when optimizing washing processes: cleanliness of the washing, flushing and corrosion protection fluid, mechanical aspects, suitability of the washing process for the components undergoing washing and filtration of the washing and flushing fluid.

When purchasing washing systems, make sure to specify the component cleanliness to be achieved and the maximum contamination load of the washing fluid in terms of *mg/l* or a cleanliness class.

Washing systems used to be subdivided into micro and micronic washing. This was a very imprecise definition of the cleaning performance to be achieved. Nowadays the permissible residual dirt quantity of the cleaned components is defined.

Specifying these residual dirt quantities is done as follows: mg/component, mg/kg component, mg/surface units or particle concentrations in various size ranges. In addition, the maximum sizes of the particles are defined which can be on the washed component, e.g. max. 3 particles > 200 μ m, no particles > 400 μ m.

These values cannot be achieved unless the factors indicated above are matched and fine-tuned. The following factors additionally have to be borne in mind: environmental protection and labor safety, local situation relating to space and power available, and the target throughput rate.

The cleanliness of the washing and flushing fluids also has a decisive impact on the cleaning performance of the washing machine. However, we are concerned here only with the maintenance of the washing and flushing fluids.

26 SCHROEDER INDUSTRIES

Removal of Particulate Contamination

Т.

Cleaning Method	Solid Contamination	Liquid, Non-Dissolved Contamination (emulsion)	Liquid, Dissolved Contamination (emulsion)
Filtration			
Belt-type Filter	Х		
Bag/Backflush Filter	Х		
Micronic Filter (tube/disk filters)	Х		
Ultrafiltration	Х	Х	
Distillation	Х	X (for high boiling point differences)	Х
Separator	Х	X (density difference)	
Oil Separator		Х	
Coalescer		Х	

1

1.1

The type and composition of the cleaning medium is to be taken into account in selecting the fluid maintenance options indicated above. When using ultrafiltration, it has to be known that separating out the cleaning substances cannot be avoided in certain cases. In addition, ultrafiltration can only be used for pre-cleaned washing media since the performance of the separating membranes is degraded when they are loaded with particulate contamination.

Bag and backflush filters in various microfilter ratings are the standard equipment used in the maintenance of the fluid of washing systems. Although these filters are suitable for removing large quantities of contamination from a system, they are not suitable in most cases for maintaining defined cleanliness classes. Owing to their design, they do not offer much resistance, (the counterpressure built up across the filter is very low), below 15 psi for the most part. That is why this filter type is frequently used in the full flow when feeding cleaning fluid into the washing or flushing chamber. The filter housings are equipped with pressure gauges for monitoring the proper functioning of the filter.

Bag filters pose the risk that overloading can cause the bag to be destroyed and large contaminant quantities released. That is why it is advisable to additionally define minimum change intervals and to regularly monitor the cleanliness of the washing fluid in addition to the standard parameters like pH value or microbial count.

Residual dirt values of cleaned components are increasingly being defined and specified as an acceptance criterion for the cleaning system. It is of paramount importance that constant adherence be maintained to these values. It is also imperative that the quality of the cleaning fluid be maintained at a high, constant level.

This can be achieved by use of the targeted microfilters, featuring a constant and absolute separation rate. In most applications, tube filters or disk filters are used. The advantage of these filter types as compared to standard hydraulic filter elements is their high contaminant retention rate owing to their depth effect.

The high contaminant separation rate offered by these filter types removes a high amount of contamination from the washing fluid. This causes the filters to become quickly exhausted and blocked. A sufficiently long service life coupled with high washing fluid cleanliness can be achieved by combining filters for removing the main portion of contaminants from the system with absolute microfilters.

Example: At a leading automotive supplier, the camshafts were to be cleaned to a defined cleanliness of 9 mg / component. Point of departure:

Technical Specifications of the Washing Machine Present on Site

Tank Volume:	21 gal. (80 l)
Pump Delivery Rate:	66 gpm (250 l/min) (centrifugal pump)
Washing Agent:	Ardox 6478 – Chemetall Group
Concentration:	2.3 – 3%
Bath Temperature:	ca. 122°F (50°C)
Filtration:	Backflush filter downstream of pump, 50 μ m filter rating

Process Data

Bath Change Frequency:	1 time/week
Throughput:	3,000 - 4,000
Wash Cycle:	15 s/component

Challenge: Clogging of the tank, Quality no longer sufficient after 2-3 days, Fluctuation in the contamination content of the components upstream of the line: 30 – 50 mg. Cleaning costs could not be allowed to increase, although quality still had to be improved.

Cleaning System continued

Using Filtration as Fluid Maintenance for Separating out Particulate Contamination

Removal of Particulate Contamination

Goal of Optimizing the Cleaning Line	 Achieve a residual contaminant value of a maximum of 9 mg/camshaft Cleanliness of washing fluid of < 30 mg/liter Extend the service life of washing fluid, i.e. save costs associated with changing the fluid Prevent clogging of the tank, e.g. save cleaning time For process reliability reasons, a low-maintenance cleaning system was added to the result which enabled the camshafts to be cleaned to a residual contaminant content of 9 mg/component, this to be done cost-effectively 					
Result of Optimization	The service life of the cleaning fluid was extended from 1 week to 8 weeks. There was no more clogging o the tank. Changing the bath fluid was done on account of the increased chloride content, not on account of contamination.					
	The residual contaminant values of max. 9 mg/camshaft and max. 30 mg/liter of bath fluid (when using a 5µm membrane for analysis) were achieved and maintained at this level.					
	By optimizing the fluid maintenance of this washing line, an improvement in quality was achieved at no added cost and without comprising process reliability.					
	This example shows that prior to components upstream of the sy for only in this way can the suc	This example shows that prior to any such optimization or in new facilities the cleanliness of the components upstream of the system, throughput, technical details, targets have to be known and defined, for only in this way can the success of such an endeavor be ensured.				
Economic Efficiency		Investment (\$)	Recurring Costs (\$)	Savings/Year (\$)		
Analysis	Off-line Filtration	5,000.00				
_	Filtration Costs		7,500.00			
	Extension of the Service Life of the Bath			10,000.00		
	Lower Reworking Costs			These costs can't be quoted.		
	Down Time of the Washing Machine for Cleaning			These costs can't be quoted.		

Functional Testing

Figure 28. Schematic illustrates the basic setup of most test stands

Most systems come into contact with the hydraulic fluid during initial system filling or function testing. This process affords the manufacturer a substantial opportunity to impact the final cleanliness of the entire system. By using suitable filtration of the filling and test fluids, system cleanliness can be quickly optimized upon delivery or commissioning.

The cleanliness of the final product can be controlled via function testing in the same way as by a washing machine. Some companies have the following motto: *"The test stand is our last washing machine."*

This statement might be true, however it is an expensive approach in practice. Yet when performing process reliability measures for supplying systems with a defined cleanliness, this is the first approach.

On a function test stand not only function

testing is performed but the components and systems are run in as well. A frequent side effect of this is the flushing effect of the system undergoing testing. By employing targeted fluid maintenance and cleanliness monitoring, this flushing effect can be used to ensure that systems possess a defined, constant cleanliness status upon delivery.

Cleanliness monitoring provides information on the process stability of the upstream fabrication and cleaning steps. Frequently, continuous monitoring of test fluid cleanliness results in the cleanliness of the entire system as supplied being documented. This approach is used in mobile hydraulics, turbines or paper machinery upon delivery or during commissioning in order to demonstrate to the final customer that his system is being supplied with the specified cleanliness.

Example: The following study illustrates the cleaning process of a pump during commissioning:

The cleanliness of the test fluid upstream of the test item is maintained at a cleanliness rating of 16 / 14 / 11 (c). After 5 minutes of testing the pump speed is briefly increased to the maximum speed. The test run is concluded after 10 minutes.

In this case, the dirt content of the test item amounted to 1 *mg/kg* component weight upon the conclusion of the test run.

As the schematic below shows, the particle concentration continuously drops during the first 4 minutes of the test run. The particle concentration jumps when the pumps are turned up to full speed after 5 minutes. The next 5 minutes are again used for cleaning the system. Now the following can be asked: "How clean are the valves that leave this test stand?"

The flushing procedure can be monitored by occasionally disassembling the valves in a defined clean environment and evaluating the dirt content of the individual components.

Figure 29. Pump commissioning Particle Count

Function Testing

Preventing Contamination

Figure 30. Valve Test Stand with 5 µm Filtration

Figure 31. Cleanliness Class Achieved by the Test Fluid: NAS 3

Storage, Logistics and Ambient Conditions

Supplier Parts and Components Manufactured In-house

Commissioning Flushing Unfortunately, improper component storage is not uncommon. Seals and gaskets which arrive at the assembly line clean and packed in bags are unpacked and filled into containers which are dirty for the most part as this involves less work and effort.

In most cases, these factors are not taken into consideration and substantial savings potential that could be easily utilized through improved packaging and storage is overlooked.

Suitable cleanliness specifications for internally produced and sourced parts enable the ingress of contamination into systems to be minimized right from the beginning.

Commissioning flushing is most frequently chosen for large systems in order to minimize wear during commissioning.

The filtration of the flushing stand has to be designed so that during subsequent analysis the contaminants flushed out of the system undergoing testing are removed and other measurements aren't skewed. As an alternative, cleanliness can be measured and recorded upstream and downstream of the test item during the entire measurement sequence.

Figure 32. Examination of the Hydraulic System of a Mobile Crane

In a mobile crane application, a specified sampling point was located directly downstream of the pump and an online particle counter connected.

The crane jib was extended after 6, 8 and 10 minutes. The graph clearly shows that every time a new area was brought on line contaminant sediments were flushed out.

When a system's characteristic curve/behavior is known, cleanliness testing can be performed at the end of function testing and, thus, system cleanliness described subsequent to commissioning. This method enables process control to be implemented quickly and reliably during series testing/commissioning. The cleaning curve plotted over time is an indication of the ingress of contaminants during assembly.

X-Series Flushing Skid

Why Contamination Control is Important

- The core aspects of contamination management are a cost analysis and efficiency review. The following costs are considered in the cost analysis:
- Warranty and non-warranty courtesy work
- Energy costs (e.g. cooling and reheating of washing machines during fluid changes)
- Test stand costs (test item time)
- Costs of the tools and dies of machine tools (increased wear due to high particle concentrations)
- Fluid costs (washing machines, test stations, machine tools)
- Labor costs (reworking, cleaning of washing machines, machine tools, etc.)
- Filter costs

	One-Time Investment	Recurring Costs / Year
Function Test Stands (5)	6,500 x 5 = 32,500	7,500 x 5 = 35,000
Storage Conditions	2,500	
Coverings for the Pallets		
Washing Machine for Cleaning the Pallets	50,000	25,000
Machining Process		2,000 x 7 = 14,000
Manpower/Cleaning	750 x 7 = 5,250	
Filtration	1,250 x 7 = 8,750	
Consulting Expenses	10,000	1,750
Total	109,000	75,750

The economic efficiency analysis (above) describes the success of contamination management as illustrated by a manufacturing line in the automotive industry with an output of 3,000 systems/day. Manufacturing is done 260 days/year (3,000 x 260 = 780,000 systems/year). A contamination review showed that the cleanliness of the function test stand fluid, the intermediate storage conditions and a machining process had to be optimized.

The next step involved forwarding the cleanliness specifications to the suppliers, who received orientation training and are periodically monitored.

The results of optimization:

- Less tool wear in surface machining
- Longer service life of the machining fluid
- Enhanced effectiveness of the downstream washing processes as less dirt had to be removed thanks to optimized storage and machining
- Longer intervals between changing the washing and flushing fluids, consequently "Saturday shifts" could be dispensed with
- Fewer outages at the test stand, i.e. the system is checked up to 3 times when performance deviations occur. These "idle cycles" were reduced by 90%, thus resulting in increased productivity.
- Drop in warranty and non-warranty courtesy work by 50% as the main reason for the outages turned out to be particulate contamination, which resulted in leakage and imprecise control in the system.
- Shortening of the test stand time.

Unfortunately we were not permitted to publish the detailed data behind these savings. Following from an economic efficiency analysis conducted by the customer in-house, savings of **\$0.60** per system were achieved.

Cost Savings Per Year	780,000 systems x \$0.60 = \$468,000
Amortization of One-Time Investment Over 3-Years (109,000 / 3-Years)	\$36,333
Recurring Costs Per Year	\$75,750
Total Savings Per Year (for first 3-years)	\$355,917

This economic efficiency analysis also includes the expenses associated with contamination management (seminars, consulting fees, analysis costs).

Economic Efficiency Analysis

Contamination Management in Practice

In the previous pages we discussed the impacts of particulate contamination on the service life and reliability of hydraulic systems, how the cleanliness of fluids on components can be specified, and how contamination monitoring is performed. Deploying contamination management results in the following tasks for all participants in the production process:

Suppliers: Ensuring the defined as-supplied condition of products. Selecting the packaging of products to be supplied so that no additional contamination occurs during transportation and storage.

System vendors and manufacturers: Careful transportation, handling, storage and unpacking of products. Keep products clean after they are unpacked or after seals/plugs have been removed. Assemble/install the components in a suitably clean environment.

The following example shows how these individual parts can be combined in contamination management.

Description of the Point of Departure

System X has been successfully manufactured and marketed for years. During the past few years, System X has been developed further and a new generation, System Y was created. Y features improved performance properties, is more compact than X, and operates at higher system pressures than X. The result is that System Y is somewhat more sensitive to particulate contamination.

This is reflected in increased performance deviations during function testing. This deviation no longer occurs when Y is passed through the test stand a second or third time. An investigation of the matter has shown that this unwanted behavior is the result of coarse particulate contamination.

The goal of contamination management is now to improve the degree of cleanliness so that this undesirable behavior no longer occurs on the test stand and the associated costs of warranty and non-warranty courtesy work are reduced.

Step 1: Analysis of the Test Fluid

The cleanliness of the test fluid is determined. The analyses show that the test fluid cleanliness upstream of the test item amounts to a cleanliness rating of 22 / 20 / 18 according to ISO 4406, the largest metallic particles are 400 μ m in size, and the largest fibers measure 3,000 μ m.

Step 2: Optimizing the Function Test Stand

By additionally integrating bypass microfiltration, which maintains test fluid cleanliness at 15 / 13 / 10, 95% of the performance deviations can be prevented. This also results in a drop in warranty and non-warranty courtesy work.

Step 3: Lowering the Filter Costs at the Test Stands

By performing a contamination monitoring audit, it might be determined a large amount of particulate contamination is being transported into the system by the manufacturing processes and sourced components. This particulate contamination has to be removed from the system at the function test stand, which functions here as the last washing operation. This results in costs that could otherwise be avoided.

A concept is developed in which the washing, machining processes, and intermediate storage are optimized.

A cleanliness specification along with a test plan for system fluids is drafted. This specification is forwarded to external as well as internal suppliers and the components supplied with a defined, constant cleanliness.

Step 4: Integrating Particle Counting in Quality Assurance

A particle sensor is integrated in the function test stand for the purpose of continuous quality control of the as-supplied quality of System Y. A limit is defined for the maximum contamination of the test fluid in the return line. Intervention can be done immediately if this value is exceeded, thus ensuring that no contaminated systems leave the factory. Random sampling is done to check the supplier quality and non-conformant components returned to suppliers or washed in-house at the supplier's expense.

Step 5: Economic Efficiency Analysis

Contamination management started off with analyzing the costs associated with warranty and non-warranty courtesy work as the result of increased malfunction at the test stands. These costs are reanalyzed after optimization and compared. The savings achieved through optimization are briefly described in Economic Efficiency Analysis. The cost savings in that case amounted to *ca. e 355,917/year* (close to half a million dollars). This optimization process lasted *ca. 2 years*.

Step 6: Documentation and New Projects

The contamination management findings are collected in a database and used in the development of new systems. The defined maximum residual dirt content becomes standard in new systems in the same way that dimensions, surface grades and tolerances have been. This residual dirt content is primarily in reference to the specification that applies to System Y.

The specification is adapted in keeping with the experience gained with the prototypes. Cleanliness and cleaning costs are primarily determined by the design of new systems.

32 SCHROEDER INDUSTRIES

CS 1000 Contamination Sensor

Formerly Known as "TCM - TestMate Series"

 Usable with FluMoS Mobile App when connected to the CSI-C-11

CSI-C-11 Compatible Product

Includes: Unit, FluMoS Software, Operation Manual and Calibration

Certificate

Features and Benefits

- Measures Particles in Four Sizes: >4, >6, >14 and >21 microns
- In-line or Manifold Mounting
- ISO or SAE codes can be output in 4-20 mA analog signal
- Compatible with Standard Mineral Fluids & Phosphate Esters
- Display and Keypad can be rotated (up to 270°)
- Inlet and Outlet Ports are Interchangeable (bidirectional) (without manifold only)
- Recommended recalibration: Only every 2 years

Description

The Contamination Sensor 1000 (CS 1000) continuously measures solid contamination in hydraulic fluid. Enclosed in a 4-inch diameter case, the CS 1000 utilizes an optical sensor and measures particles in four sizes: >4, >6, >14 and >21 microns. Measurement results can be output as a contamination code according to ISO 4406:1999 or SAE AS 4059(D).

The CS 1000 is designed for connection to hydraulic and lubrication lines with pressures up to 5075 psi (350 bar) and viscosities up to 4635 SUS (1000 cSt). The unit requires that a small flow of oil (between 30 mL/min and 500 mL/min) is diverted for measurement purposes.

The CS 1000 provides the user with a smaller, tougher, and more versatile stationary sensor. It provides instantaneous readings and is able to self-diagnose continuously with error indication via the status LED. The attractive cost-to-performance ratio makes it especially applicable for OEM applications. Online, real-time condition monitoring allows you to have total predictive maintenance.

Measuring Range:	Display ISO ranges between 9/8/7 and 25/24/23 Calibration within the range ISO 13/11/10 to 23/21/18		
Contamination Output Code:	Standard: ISO 4406:1999 or SAE AS 4059(D) Optional: ISO 4406:1987; NAS 1638 and ISO 4406:1999; SAE AS 4059(D)		
Self-Diagnosis:	Continuously with error indication via status LED		
Inlet/Outlet:	5075 psi (350 bar) max		
Connections:	Inlet: ISO 228 G1/4 Threaded Outlet: ISO 228 G1/4 Threaded		
Sensor Flow Rate:	30 to 500 mL/min		
Permissible Viscosity Range:	32 to 4635 SUS (1 to 1,000 cSt)		
Fluid Temperature Range:	32°F to 185°F (0°C to +85°C)		
Power Supply Voltage:	9 to 36 VDC residual ripple <10%		
Accuracy:	+/- $\frac{1}{2}$ ISO class in the calibrated range		
Power Consumption:	3 Watt max		
Electrical Outputs:	4 to 20mA Analog; 2 to 10 V Analog (option) RS485		
Electrical Specifications:	4 to 20 mA Analog output (max burden 330Ω); 2 to 10 V output (min. load resistor 820Ω) Limit switching output (Power MOSFET): max current 1.5A		
Ambient Temperature Range:	-22°F to 176°F (-30°C to +80°C)		
Storage Temperature Range:	-40°F to 176°F (-40°C to +80°C)		
Relative Humidity:	95%, non-condensing max		
Seal Material:	Mineral Oil: Viton [®] Phosphate Ester: EPR		
Electrical Safety Class:	III (low voltage protection)		
IP Class:	IP67		
Weight:	2.9 lbs (1.3 kg)		
Mounting Position:	Recommended vertical installation with direction of flow south to north through CS 1000 or manifold block		

Specifications

NOTES:

All Models feature an analog electrical output. Additionally, an electrical switching output can be configured to alert the operator about rising falling contamination level.

Viton® is registered trademark of DuPoint Dow Elastomers.

34 SCHROEDER INDUSTRIES

Contamination Sensor CS 1000

CSI-C-11

Features

- Enables the user to transfer data from CS 1000 to PC
- Enables user to change CS 1000 settings
- Enables user to have real time monitoring & data storage

What's Included

Converter box, 115 VAC to 24 VDC adapter, USB driver, FluMoS software, communication & power cables, case

Features

- For WLAN or LAN transmission of data.
- Addition of data stage capabilities.

Formerly Known as "TCM - TestMate Series"

Communication cable and power adapter can be ordered individually.

\square	Length inches (mm)	∆P (max) psi (bar)	Description	Part Number
	6 (152)	6,500 (450)	SM4-1620-006	7612174
5 Ø	35 (889)	6,500 (450)	SM4-1620-035	7612175

Communication Kit Description: CSI-D-5 7632013 CSI-C-11 Sensor Interface Module P/N 4066011 **Description: Power Adaptor** (PS5) P/N 7600801 Schroeder **Retrofit System** Check **TestPoint Options** for CS 1000 AMS, AMD NOTES: In-line version of CS. In-line version cannot be mounted **KLS, KLD** on manifolds **AKS, AKD Microflex Hose X** Series Options for CS 1000 **Triton-A**

CS 1000 Contamination Sensor

Contamination Sensor

 Compatible with:

-

Features and Benefits

- Critical machine conditions are identified in early stages
- Continuous monitoring of oil conditions
- Condition-based maintenance planning

Market Applications

- Industrial hydraulic and lubrication systems
- Mobile hydraulics

The Contamination Sensor CS 1939 is an online fluid sensor for permanent monitoring of particle contamination in fluids. The cleanliness results are presented according to ISO/SAE classifications.

This instrument combines the latest materials and technologies with proven engineering and provides the user with a compact and robust stationary sensor.

The attractive price/performance ratio makes it particularly advantageous for OEM applications for Condition Monitoring.

Self-diagnosis:	Continuous with error display via status LED	
Measured variables:	ISO 4406 SAE AS 4059	
Service parameters:	Flow (status) Drive (%) Temp (°F) and (°C)	
Installation position:	Recommended: vertical direction flow	
Ambient temperature:	-22°F to 176°F (-30°C to 80°C)	
Storage temperature range:	-40°F to 176°F (-40°C to 80°C)	
Relative humidity:	max. 95%, non-condensing	
Seal Material:	FPM for CS1939-0 / EPDM for CS1939-1	
Protection class:	III (safety extra-low voltage)	
Weight:	2.9 lb (1.3 kg)	
Measuring range:	Sensor measures from Class ISO 9/8/7 (MIN) to Class ISO 25/24/23 (MAX) Calibrated in the range ISO 13/11/10 to 23/21/18	
Accuracy:	+/-1/2 ISO class in the calibrated range	
Operating pressure:	max. 5075 psi / 350 bar	
Hydraulic connection:	Inline or hose connection (A,B): thread G1/4, ISO 228 or flange connection (C,D): DN 4	
Permitted measurement flow rate:	30 to 500 mL/min	
Permitted viscosity range:	32 to 4635 SUS (1 to 1000 cSt)	
Fluid temperature range:	32°F to 185°F (32°C to 85°C)	
Connection, male:	M12x1, 5-pole, to DIN VDE 0627 or IEC61984	
Supply voltage:	9 to 36 VDC, residual ripple < 10%	
Power consumption:	3 watts max.	
CAN interface:	2-wire, half duplex SAE CAN J1939 protocol	
HSI (Sensor Interface):	1 wire, half duplex	

	CSM
	TFL
FluMoS	TFH
MOBILE	FCU
()	MCS
	AS
FluMoS	SMU
	СТИ
((),	ЕРК
EluMos	Trouble
PROFESSIONAL	Check Plus
	HMG2500
Description	HMG4000
	ET-100-6
	НТВ
	RFSA
	HFS-BC
	HFS-15
Specifications	
	HY-TRAX® Retrofit System
	MFD-MV
	MFS-HV
	AMS, AMD
	FS
	AMFS
	KLS, KLD
	МСО
	AKS, AKD
	LSN, LSA, LSW
	X Series
	OLF Compact
	015

Triton-A

CS 1939 Contamination Sensor

Contamination Sensor

CS 1939 Contamination Sensor

Model Number Selection	How to Build a Valid Model Number for a Schroeder CS 19 BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 CS - - - - - - Example: NOTE: One option per box BOX 3 BOX 4 BOX 5 - - CS - 1 BOX 2 BOX 3 BOX 4 BOX 5 CS - 1939 0 - 0 000 = CS1939-0-0/-	39: 000
	BOX 1 BOX 2	
	Type Indicator Code	
	CS 1939 = Contamination Codes ISO 4406; SAE 4059 (D) / > 4 μm(c) > 6 μm(c) > 14 μm(c) Interface/protocol: CAN/CAN SAE J1939 without Display	> 21 µm(c) Electrical connection Plug M12x1, 5-pole
	BOX 3BOX 4FluidsMounting0 = based on Mineral Oil0 = Inline or hose connection1 = Phosphate Esters1 = Flanged connection	BOX 5 dification Number ard ock Kit (requires mounting option 1)
Scope of Delivery	 Contamination Sensor - 2 x O-Ring (only for flange connection version) - CD with FluMoS Light Sof - CD with detailed operatin in different languages (PD 	tware and manual g and maintenance instructions F viewer software required)
Accessories	Designation	Part-No.
	Supply voltage	
	Female connector with 5 m cable, screened, 5-pole, M12x1	3527626
	Female connector with 10 m cable, screened, 5-pole, M12x1	3527627
	Extension cable 5 m, female connector 5-pole, M12x1 / Male connector 5-pole, M12x1	6040852
	Female connector with screw terminal, 5-pole, M12x1	6049128
	CSI-D-5 Contamination sensor interface	3249563
	FluMoS Professional Software (CD)	3371637
Pressure - Viscosity Range	(red and the second sec	800 1000 60 300 mil/min 50 40 20 100 mil/min 10 30 mil/min 30 mil/min 30 mil/min 30 mil/min 10 30 mil/min 30 mil/min 30 mil/min 10 mil/min 10 mil/min 30 mil/min 10 mil

ConditionSensor Interface

CSI-C-11

Features and Benefits

- Ability to view in real-time measured contamination results via Wireless Connection or *Bluetooth*[®] wireless technology with the FluMoS Mobile App
- Storage of the measured data directly on the CSI-C-11
- Easily interface digital sensors into existing LAN network
- Direct connection of up to two (2) SMART sensors via M12x1 connectors
- Integral bracket allows for easy installation on existing machines
- Due to high protection class of IP66, no switch cabinet for installation is required

- **Market Applications**
- Construction Equipment
- Agricultural Machinery
- Test Benches
- Industrial Hydraulic Systems
- Combination with Filter Unit
- Power Units
- Any hydraulic system that requires on-line monitoring
- Mobile and Stationary Mining Equipment

The ConditionSensor Interface CSI-C-11 is used to transmit digital sensor signals into a network protocol (HSI TCP/IP or Modbus® TCP), which can be transmitted to a stationary or mobile device via network cable (LAN) or wireless connection (W-LAN). Moreover, the CSI-C-11 is equipped with an internal memory and can be used as a data logger.

At the interface module, up to two sensors can be connected via M12 connector and supplied with power. In addition, the CSI-C-11 is equipped with an Ethernet connector (M12x1 socket), which allows the integration of connected sensors into company networks and control systems (PLC).

HSI Interface:	Schroeder Sensor Interface for digital coupling of sensors	Spec
Ethernet 10 Base-T / 100 Base-TX W-LAN (HSI only) 2,4 GHz, IEEE 802.11 b/g/n:	Protocol: HSI TCP/IP (Port 49322) Modbus [®] TCP (Port 502)	
Operating temp. range:	-13 to 185°F (-25 to 85°C)	
Storage temp. range:	-22 to 185°F (-30 to 85°C)	
Relative humidity:	0 70 %, non-condensing	
C€ marked:	EN 61000-6-2, EN 61000-6-4	
Protection class according to DIN 40050:	IP 66	
Supply Voltage:	12 24 V DC ± 10 %	
Current requirement (module):	100 mA (plus the consumption of the connected sensors)	
Sensor supply:	12 24 V DC (looped through)	
Electrical connection:	Supply voltage: Connector, M12, 5-pole, male SMART Sensor 1: Connector, M12, 8-pole, female SMART Sensor 2: Connector, M12, 5-pole, female LAN: Connector, M12, 4-pole, coding D (according to IEC61076-2-101), female W-LAN antenna: Connector, RP-SMA socket, female	
Parameterisation:	via connector M12x1, 5-pole acc. to DIN VDE 0627 or W-LAN (FluMoS mobile)	
Dimensions:	5.2" x 3.1" x 1.4" (131 x 77.5 x 35.5 mm)	
Housing:	die cast aluminium	
Weight:	0.79 lb. (≈ 360 g)	
Size:	64 mB	

CSI-C-11 ConditionSensor Interface

Model Number	How to Build a Valid Mode	l Number for a Schroede	er CSI-C-11:			
Selection	BOX 1 BOX 2 BOX 3	BOX 4				
	Example: NOTE: One option per box					
	CSI - C - 11	-000 - CSIC11000				
	BOX 1 BOX 2	BOX 3	BOX 4	_		
	Type Housing	Output Type	Modification			
	C = Aluminum Housing	11 = HSI Ethernet / W-LAN	000 = Standard			
Accessories	Designation		Part-No.			
	Supply voltage					
	PS5 power supply 100 – 240V AC, 50-60 Hz, 1,1 A, IP40; connector 3399939 M12, 5-pole, female 3399939					
	ZBE-43-05 connecting cable, connector 5-pole with cable, length = 3281240					
	ZBE-43-10 connecting cable, connector 5-pole with cable, length =351976832.8 ft. (10 m)3519768					
	Sensor connection cable for CSM_E					
	7BE43-005 connecting cable CS	-C-11 coupling / plug 8-pole l	enath -			
	1.6 ft. (0.5 m) 4193544					
	ZBE30-005 connecting cable CSI-C-11, coupling / plug 5-pole, length = 4193586			4193586		
	Network cable (LAN)					
	ZBE 45-05 network cable (Patch) connector RJ45, length = 16.4 ft	, connector 4-pole, coding D / . (5 m)		3346100		
	ZBE 45-10 network cable (Patch) connector RJ45, length = 32.8 ft	, connector 4-pole, coding D / . (10 m)		3346101		

Dimensions

42 SCHROEDER INDUSTRIES

ConditionSensor Interface CSI-C-1

CSI-C-11 ConditionSensor Interface

Plug Pin Assignment

Pin	Signal	Description	
1.1	Vin 12 24 V DC	Device (CSI-C-11)	Power supply +
1.2		Device (CSI-C-11	n.a.
1.3	GND	Device (CSI-C-11)	Power supply GND
1.4		Device (CSI-C-11)	n.a.
1.5	HIS	Device (CSI-C-11)	Parameterisation
2.1	S1 12 24 V DC	Sensor 1	Power supply +
2.1		Sensor 1	n.a.
2.3	S1 GND	Sensor 1	Power supply GND
2.4		Sensor 1	n.a.
2.5	S1 HIS	Sensor 1	HSI signal
2.6		Sensor 1	n.a.
2.7		Sensor 1	n.a.
2.8		Sensor 1	n.a.
3.1	S2 12 24 V DC	Sensor 2	Power supply +
3.2		Sensor 2	n.a.
3.3	S2 GND	Sensor 2	Power supply GND
3.4		Sensor 2	n.a.
3.5	S2 HIS	Sensor 2	HSI signal
4.1	ETH TX+	Network (LAN)	Ethernet port data transmission +
4.2	ETH RX+	Network (LAN)	Ethernet port data receive +
4.3	ETH TX-	Network (LAN)	Ethernet port data transmission -
4.4	ETH RX-	Network (LAN)	Ethernet port data receive -
5.1	ANT	Network (W-LAN)	RP-SMA-socket W-LAN-antenna

Manually	Controlled
Fluid Samp	ling System

Features and Benefits

- Provides Local Visibility to the Fluid Condition of Critical Systems.
- Integrated micro VSD, (Variable Speed Drive), pump/motor provides optimal flow for accurate sensor readings in variable conditions.
- The HY-TRAX[®] Manually Controlled Fluid Sampling System allows a user to retrieve ISO cleanliness levels from a reservoir tank or a low-pressure line (<50 psi max).
- The compact design allows for installations with tight space constraints.
- The Manual rheostat VSD pump controller is housed in a compact IP 40 enclosure and allows the user to adjust the pump flow for optimal sensor readings.
- Optional AC adapter allows the unit to operate on 115 VAC 60 Hz. 24 VDC is standard.
- Rugged design for field use.
- Viton[®] seals.
- Fluid viscosities up to 350 cSt.
- Flow control valve providing optimal pressure for accurate sensor readings.
- TestMate[®] Contamination Monitor (TCM)
- Machined, 6061-T651 aluminum alloy manifold block with anodized surface treatment.
- Specially designed fitting for mating to pump/motor.
- Viton[®] seals.
- Plugged water sensor port (G3/8)
- VSD (Variable Speed Drive) Motor Power Supply and Control Cable
- Water Sensor (TWS-D) Power Supply and Signal Cable (only supplied with optional water sensor (TWS-D))
- Contamination Monitor (TCM) output signal, USB-B Female Port for use with Windows-Based Computer and FluMoS Software, located on **Control Enclosure**
- Contamination Monitor (TCM), output signal, M12x1, 8 pole, Male Port, located on Control Enclosure, for use with PLC or RS485 Communication, analog or digital, 4 - 20 mA is standard, 2 to 10 V is optional

Fluid Sampling System	
Patent pending	Manually Controlled Fluid Sampling System
Applications	
 Mobile Equipment Technology Surface Mining Construction Monitoring of Oil Cleanliness in Storage Tanks Fleet Services Rail 	
Elow control valve	What's
 VSD (Variable Speed Drive) pump/motor 	Included
 Manual rheostat pump controller 	Retr
IP 40 enclosure	
 Fluid Inlet/Outlet Porting (SAE Size 04 ORB) 	
 24 VDC Power Supply (NC3MP Female Connector) 	
Optional 115 VAC Power Supply with Cord	
 Contamination Monitor (TCM) Power and Signal Cable 	
 Water Sensor (TWS-D) M12x1, 5 pole Signal Output Connection, Male Port, located on Control Enclosure 	10
 Contamination monitor (TCM) power connection, female M12x1, 8 pole located on control 	
 Water sensor (TWS-D) power connection, M12x1, 5 pole Female located on control enclosure 	0

KLS, KLD

X Series

HY-TRAX®

Specifications

HY Manually Controlled HY-TRAX[®] Fluid Sampling System

Measuring Range:	Display ISO ranges between 25/24/23 and 9/8/7 Calibration within the range ISO 13/11/10 to 23/21/18		
Contamination Output Code:	Standard: ISO 4406:1999 or SAE AS 4059(D) Optional: ISO 4406:1987; NAS 1638 and ISO 4406:1999		
Self-Diagnosis:	Continuously with error indi	cation via status LED	
Pressure Rating:	50 psi (3.4 bar) max		
Fluid Inlet/Outlet:	SAE ORB, Size 4		
Seal Material:	Viton [®]		
Pump Speed:	500-5000 rpm (adjustable)		
Optimal Sampling Pump Flow Rate:	0.008-0.079 gpm (30-300 r	nL/min)	
Fluid Temperature Range:	32°F to 185°F (0°C to +85°C	C)	
Ambient Temperature Range:	-22°F to 176°F (-30°C to 80	°)	
Max Viscosity:	1622 SUS (350 cSt)		
Pump Type:	Gear Pump		
Power Supply Voltage:	24 VDC +/- 10%, Residual F	Ripple <10%	
Max Power/Current Consumption:	100 Watt/ 4 amp		
Electric Output:	4-20 mA analog output; 2 to 10 V analog (option for contamination monitor (CS)) RS485 for communication with FluMoS Software		
Electrical Specifications:	4 - 20 mA analog output (max burden 330 Ω)		
	2 to 10 V output (min load resistor 82 Ω)		
	Limit switching output (Power MOSFET): max current 1.5A		
TestMate [®]	USB-B Female Port for use with Windows-based computer and FluMoS Software		
Contamination Monitor	M12x1, 8 pole, Male Port, Analog or Digital, for use with PLC or RS485		
Connections Located on	Communication, (4 - 20 mA	is standard). 2 to 10 V is opt	tional, must specify when
Control Enclosure:	ordening restiviate - Contain		
Water Sensor (TWS- D) Signal Output Connection Located on	Water sensor (TWS-D) M12x1, 5 pole Signal Output 5 pole Male Port, located on Control Enclosure		
Control Enclosure:			
Electrical Safety Class:	III (low voltage protection)		
Enclosure Ratings:	IP 40 enclosure		
	Weight and	Dimensions	
Communications Module	Fluid Sampling System	HY-TRAX [®] Manual	Fluid Sampling Manifold
Control TestMate [®] Sensor	Manitold w/ TCM & VSD	Control Module	w/ Communications
Sensor			Motor
	10 lbs. (4.5 kg)	5 lbs. (2.5 kg)	15 lbs. (6.8 kg)
	10.3" x 6.8" x 4.3"	9.3″ x 5.7″ X 2.6″	
	(262 x 173 x 109 mm)	(236 X 145 x 65 mm)	

Hy-TRAX[°] Manually Controlled Fluid Sampling System

sampling system		CSI-C-11
r Customers who have a Testu	HY-TRAX [®] Fluid Sampling System Manifold with Manual Controller and VSD Pump/ Motor	HY-TRAX® RBSA CSM TFL TFH FCU MCS AS SMU
((M) "Mate®		СТИ
		ЕРК
		Trouble Check Plus
		HMG2500
		HMG4000
		ET-100-6
		HTB
		RFSA
		HFS-BC
		HFS-15
		MFD-BC
		WIFS, WIFD
Outlet Porting (SAE Size	What's Ret	rofit System
	Included	MFD-MV
ver Supply (NC3MP Female		MFS-HV
5 VAC Power Supply with Cord		AMS, AMD
or (TWS-D) M12x1, 5 pole Signal inection, Male Port, located on osure		FS AMFS
Contamination monitor (TCM) power		KLS, KLD
female M12x1, 8 pole located on osure		МСО
or (TWS-D) power connection, M12x1,		AKS, AKD
ale located on control enclosure	LS	N, LSA, LSW
		X Series
		NxTM
		VEU
		IXU
		Triton-A
		Triton-E
		NAV
		SVD01
		SVD
SCHROEDER INDUSTRIES	47	OXS
		Appendix

Features and Benefits

- Provides Local Visibility to the Fluid Condition of Critical Systems.
- Integrated micro VSD, (Variable Speed Drive), pump/ motor provides optimal flow for accurate sensor readings invariable conditions.
- Designed to be used with Schroeder Industries $\ensuremath{\mathsf{TestMate}}^{\ensuremath{\mathbb{R}}}$ contamination monitor (TCM) and optional water sensor.
- The HY-TRAX[®] Manually Controlled Fluid Sampling System allows a user to retrieve ISO cleanliness levels from a reservoir tank or a low-pressure line (50 psi max).
- The compact design allows for installations with tight space constraints.
- The Manual VSD pump controller is housed in a compact IP 40 enclosure and allows the user to adjust the pump flow for optimal sensor readings.
- Optional AC adapter allows the unit to operate on 115 VAC 60 Htz.
- Rugged design for field use.
- Viton[®] seals.
- Fluid viscosities up to 350 cSt.
- Flow control valve providing optimal pressure for accurate sensor readings.
- Manual rheostat control adjusts VSD (Variable Speed Drive) pump speed to adjust for variances in fluid viscosities.
- Machined, 6061-T651 aluminum alloy manifold block with anodized surface treatment.
- Specially designed fitting for mating to pump/motor.
- Viton[®] seals.
- Plugged water sensor port (G3/8)
- VSD (Variable Speed Drive) Motor Power Supply and Control Cable
- Flow control valve
- VSD (Variable Speed Drive) pump/motor
- Manual rheostat pump controller
- IP 40 enclosure

- Fluid Inlet/C 04 ORB)
- 24 VDC Pov Connector)
- Optional 11
- Water Sense Output Cor control encl
- TestMate[®] connection, control encl
- Water sense 5 pole Fema

HY Manually Controlled HY-TRAX[®] Fluid Sampling System

Model Number	How to Build a Valid Model Number for a Schroeder HY-TRAX®
Selection	IVIANUALIY CONTROLLED FIUID Sampling System: BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 6 BOX 7 BOX 8 BOX 9
	Example: NOTE: One option per box BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 6 BOX 7 BOX 8 BOX 9
	BOX 1 BOX 2 BOX 3 BOX 4
	Model Testimate Contamination Wontor Fluid Type Testimate Contamination (TCM) Fluid Type M(Contamination Monitor (TCM) Signal Output
	HY ND = TCM w/ no display ND = TCM w/ no display HY Hydraulic & Diesel Fuel only*
	NT = Manifold supplied w/ no TCM, Customer will supply TCM
	(manifold mount version needed)
	BOX 5 BOX 6
	Monitor (TCM) Output Options Water Sensor (TWS) Option
	$M = ISO 4406/SAE 4049 \qquad Omit = None$ $N = ISO 4406/NAS 1638 \qquad TWS-D = Water sensor w/ display$
	BOX 7 BOX 8 BOX 9 Manually Controlled Sampling System Power Ontions
	Omit = Panel with Rheostat flow control, power and Omit = 24 VDC Omit = None
	signal output for HY-TRAX [®] sampling system $P = 115$ VAC $L = Looped$ hose
	and fitting
	*Note: Off-road diesel contains dye. High concentrations of dye may interfere
	with particle count results. Please contact factory to review application.

48 SCHROEDER INDUSTRIES

HY-TRAX[®] **Telematic Communications Module** with Remote Controlled Sampling System

Patent pending

Features an	d Benefits
-------------	------------

- Provides Remote Visibility to the Fluid Condition of Critical Systems.
- Integrated micro VSD, (Variable Speed Drive), pump/ motor provides optimal flow for accurate sensor readings in variable conditions.
- This HY-TRAX[®] Remote Oil Contamination Sensor Package allows remote access via the Internet and smart devices to fluid particle counts, temperature, and percent water saturation levels (optional) displayed on a customizable dashboard. The fluid sampling system collects data and the communications module transmits this data via GSM cellular at scheduled intervals. Users can receive alerts via email when a fluid's ISO contamination code or water saturation level (optional) reaches user defined critical levels. The unit can sample fluid directly from a fluid reservoir or low pressure line (<50 psi).
- The Communications Module automatically controls fluid flow to compensate for viscosity changes due to temperature or fluid type. All data is transmitted through a secure VPN and archived in a protected database in the cloud to allow real-time and historical analysis
- The HY-TRAX[®] Communications Module will provide maintenance managers with the visibility and vital information necessary to pro-actively schedule preventative maintenance on local and remote equipment. Maintenance decisions can now be based on accurate and real-time data.
- The communications module components are mounted and housed in a rugged IP 40 enclosure.
- Fluid sampling system standard with Viton[®] seals.
- Fluid viscosities up to 350 cSt.
- 50 psi (max.) working pressure.
- Flow control valve providing optimal pressure for accurate sensor readings.
- VSD, (Variable Speed Drive), pump/motor providing optimal flow for accurate sensor readings.

Applications

- Mobile Equipment Technology
- Surface Mining
- Construction
- Rail

 Monitoring of Oil Cleanliness in

Fleet Services

Storage Tanks

Module with	RBSA
Remote	CSM
Controlled	TFL
Sampling Sys	stem
	FCU
	MCS
	AS
	SMU
	СТИ
	ЕРК
	Trouble Check Plus
	HMG2500
	HMG4000
	ET-100-6
	НТВ
	RFSA
	HFS-BC
	HFS-15
	MFD-BC
	MFS, MFD
	HY-TRAX [®] Retrofit System
	MFD-MV
	MFS-HV
	AMS, AMD
	FS
	AMFS
	KLS, KLD
What's	
Included	X Series
	OLF Compact
	OLF
	OLF-P
	NxTM
	VEU
	IXU
	Triton-A
	Triton-E
	NAV
	SVD01
	SVD
	OXS
	Appendix

- Flow Control Valve
- GSM cellular communications
- VSD pump/motor
- Machined, 6061-T651 aluminum alloy manifold block with anodized surface treatment
- TestMate[®] Contamination Monitor (TCM) Communications/Power Cable
- Specially designed fitting for mating to pump/motor

- Plugged water sensor port (G3/8)
- IP 40 enclosure
- Water sensor (optional)
- 24 volts DC standard with optional 115 VAC Power Supply
- Optional Water Sensor (TWS-D) Communication/ Power Cable

SCHROEDER INDUSTRIES 49

■ Fluid Inlet/Outlet Porting (SAE Size 04 ORB)

LIV TO A VO

Specifications

Telematic Communications Module HY-TRAX[®] with Remote Controlled Sampling System

(264 x 173 x 109 mm)

(374 x 287 x 133 mm)

Telematic Communications Module with Remote Controlled Sampling System

Features and Benefits

HY-TRAX®

- Integrated micro VFC, (Variable Speed Drive), pump/ motor provides optimal flow for accurate sensor readings in variable conditions
- Rugged design for field use
- Fluid viscosities up to 350 cSt
- 50 psi (max.) working pressure
- Flow control valve providing optimal pressure for accurate sensor readings
- Designed to be used with Schroeder Industries' communications module and optional water sensor

What's Included

- Machined, 6061-T651 aluminum alloy manifold block with anodized surface treatment
- Specially designed fitting for mating to pump/motor.
- Viton[®] seals.
- Plugged water sensor port (G3/8)
- Flow control valve
- Contamination Monitor
- Micro VSD pump/motor
- Fluid Inlet/Outlet Porting (SAE Size 04 ORB)

Features and Benefits

- Provides Remote Visibility to the Fluid Condition of Critical Systems.
- Integrated micro VSD, (Variable Speed Drive), pump/ motor provides optimal flow for accurate sensor readings in variable conditions.
- Designed to be used with Schroeder Industries contamination monitor (TCM - manifold mount version only) and optional water sensor.
- This HY-TRAX[®] Remote Oil Contamination Sensor Package allows remote access via the Internet and smart devices to fluid particle counts, temperature, and percent water saturation levels (optional) displayed on a customizable dashboard. The fluid sampling system collects data and the communications module transmits this data via GSM cellular at scheduled intervals or on demand. Users can receive alerts via email when a fluid's ISO contamination code or water saturation level (optional) reaches user defined critical levels. The unit can sample fluid directly from a fluid reservoir or low pressure line (<50psi).
- The Communications Module automatically controls fluid flow to compensate for viscosity changes due to temperature or fluid type. All data is transmitted through a secure VPN and archived in a protected database in the cloud to allow real-time and historical analysis.
- The HY-TRAX $^{\textcircled{R}}$ Communications Module will provide maintenance managers with the visibility and vital information necessary to pro-actively schedule preventative maintenance on local and remote equipment. Maintenance decisions can now be based on accurate and real-time data.
- The communications module components are mounted and housed in a rugged weatherproof IP 40 enclosure.
- Fluid sampling system standard with Viton[®] seals.
- Fluid viscosities up to 350 cSt.
- 50 psi (max.) working pressure.
- Flow control valve providing optimal pressure for accurate sensor readings.
- VSD, (Variable Speed Drive), pump/motor providing optimal flow for accurate sensor readings.

What's Included

- Flow Control Valve
- GSM cellular communications
- VSD pump/motor
- Machined, 6061-T651 aluminum alloy manifold block with anodized surface treatment

SCHROEDER INDUSTRIES 51

- Specially designed fitting for mating to pump/motor
- IP 40 enclosure
- Plugged water sensor port (G3/8)
- Fluid Inlet/Outlet Porting (SAE Size 04 ORB)

HY	(
HY-TRAX [®] Fluid Sampling System Manifold with Contamination Sensor and VSD Pump/ Motor	(HY
	Che HN HN E
HY-TRAX [®] Fluid Sampling Manifold with Communications Module and Ref VSD Pump/ Motor	I MF HY trofit N I AM
HY-TRAX [®] Telematics LS Communications Module only	K Ak SN, LS)

Eluid Compling	HY-TRAX®
Fluid Sampling	RBSA
Manifold with	CSM
Contamination	TFL
Sensor and	TFH
VSD Pump/	FCU
Motor	MCS
	AS
	SMU
	СТИ
	ЕРК
	Trouble
	Check Plus
	HMG2500
	HMG4000
	ET-100-6
	НТВ
	RFSA
	HFS-BC
HY-TRAX®	HFS-15
Fluid Sampling	MFD-BC
Manifold with	MFS, MFD
Communication Module and	ns _{HY-TRAX®} Retrofit System
VSD Pump/	MFD-MV
WOTOr	MFS-HV
	AMS, AMD
	FS
	AMFS
	KLS, KLD
	МСО
HY-TRAX [®]	AKS, AKD
Telematics	LSN, LSA, LSW
Module only	X Series
operates with	OLF Compact
Firmware 3.0 and	OLF
4-20 mA outputs.	OLF-P
versions will not	NxTM
communicate	VEU
to the telematics	IXU
module. Contact factory for more	Triton-A
details.	Triton-E
	NAV
	SVD01
	SVD
	OXS
	Appendix

Telematic Communications Module with Remote Controlled Sampling System

HY-TRAX® Communications Module

HY-TRAX[®] Telematics Module can be utilized on existing **CS** installations when the sensor receives adequate pressure (>120 psi) and flow (30-150 mL/min) from the hydraulic system. The CS must have 4-20 mA outputs and Firmware version 3.0.

What's Included

- GSM cellular communications
- IP 40 enclosure
- VSD, (Variable Speed Drive), Motor Controller
- 115 VAC Power Supply

Features and Benefits

- Provides remote visibility to the fluid condition of critical systems.
- The HY-TRAX[®] Remote Oil Contamination Communications Module allows remote access via the Internet and smart devices to fluid particle counts, temperature and percent water saturation levels (optional) displayed on a customizable dashboard. The Communications Module collects and transmits data via GSM cellular at scheduled intervals. Users can receive alerts via email or text when the fluid's ISO contamination code or water saturation level (optional) reaches user defined critical levels.
- The Communications Module automatically controls fluid flow to compensate for viscosity changes due to temperature or fluid type. All data is transmitted through a secure VPN and archived in a protected database in the cloud to allow real-time and historical analysis.
- The $\operatorname{HY-TRAX}^{\textcircled{R}}$ Communications Module will provide maintenance managers with the visibility and vital information necessary to pro-actively schedule preventative maintenance on local and remote equipment. Maintenance decisions can now be based on accurate and real-time data.
- The communications module components are mounted and housed in a rugged IP 40 enclosure.

11.31

[287]

Hy-TRAX[®] Telematic Communications Module with Remote Controlled Sampling System

CS 1939

Telematic Communications Module HY-TRAX[®] with Remote Controlled Sampling System

How to Build a Valid Model Number for a Schroeder HY-TRAX[®] Telematic Communications Module with Remote Controlled Fluid Sampling System:

BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 6 BOX 7 BOX 8 BOX 9 HY	
Example: NOTE: One option per box	
BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 6 BOX 7 BOX 8 BOX 9	
HY H M A = HYHMA	

BOX 1	BOX 2	BOX 3	BOX 4
Model	TestMate [®] Contamination Monitor (TCM)	Fluid Type	TestMate [®] Contamination Monitor (TCM) Signal Output
ЦV	Omit = TCM w/ display	H = For use w/	Omit = 4-20 mA
111	ND = TCM w/ no display	Fuel only*	NOTE: For customers with
	NT = Manifold supplied w/ no TCM, Customer will supply TCM; TCM must be 4-20 mA output only		existing TCMs w/ a 2 to 10 V analog output please see HY-TRAX® Manually Controlled Sampling System

BOX 5	BOX 6	BOX 7
TestMate [®] Contamination Monitor (TCM) Output Options	Water Sensor (TWS) Option	Communications Module w/ Remote Controlled Fluid Sampling System
M = ISO 4406/SAE 4049	Omit = None	A = Telematic Communications Module w/ Dashboard Data Display (GSM Cellular)
N = ISO 4406/NAS 1638	TWS-D = Water sensor w/ display	NOTE: For customers with existing TCMs w/ a 2 to 10 V analog output please see HY-TRAX [®]
		Manually Controlled Sampling System

BOX 8	BOX 9
Communications Module Power Options	Air Suppression Loop
Omit = 24 VDC	Omit = None
P = 115 VAC	L = Looped hose
	and fitting

*Note: Off-road diesel contains dye. High concentrations of dye may interfere with particle count results. Please contact factory to review application.

HY-TRAX[®] Telematics Communications Module only operates with CS's operating on Firmware V03.00. Older firmware versions will not communicate proper flow rate to the telematics module. Contact factory for additional information.

RBSA **Reservoir Breather Fluid Sampling Adapter**

RBSA

Reservoir

Breather

Sampling

Adapter

Features and Benefits

- Drop-in reservoir breather retrofit for fluid sampling provides clean easy access to the reservoir through the existing breather part
- Provides easy fluid quality sampling solution for HY-TRAX[®] and return ports
- HY-TRAX[®] adapter kit includes #6 & #4 JIC adapters with 6' connection hoses included
- 24" SS drop tubes can be cut to length
- Standard 6 bolt breather pattern
- Anodized 6061 aluminum breather
- ¾" NPT for breather element

Market Applications

 All applications with a hydraulic reservoir utilizing a 6-bolt mounting connection

Reservoir Mounting Pattern: Fits standard 6-bolt Supply Port Thread Size: 9/16-18 UN Return Port Thread Size: 7/16-20 UN Breather Port Thread Size: 34" NPT

Return Tubes:

Fittings: #6 & #4 JIC fittings and 6' supply/return hoses.

or			SMU
			СТИ
			ЕРК
			Trouble Check Plus
roconvoir	l I		HMG2500
ection			HMG4000
			FT-100-6
			HTR
		-	RESA
			HFS-BC
			HFS-15
			MFD-RC
0. <u> </u>	PAD HEAD SCREW- (4) TOTAL	Mounting	MES MED
++	05.0C-	Requirement	HY-TRAX® Retrofit System
	ALL Q PART		MFD-MV
0	40. 45		MFS-HV
MOUNTING REQUIREMENT			AMS, AMD
			FS
			AMFS
			KLS, KLD
	1/4" O.D. TUBING		МСО
			AKS, AKD
			LSN, LSA, LSW
			X Series
			OLF Compact
			OLF
			OLF-P
			NxTM
Fits standard 6-bolt		Specifications	VEU
9/16-18 UN			IXU
3/4" NPT			Triton-A
#6 & #4 JIC fittings an	d 6' supply/return hoses.		Triton-E
Supplied with 3/8" an	d ¼" return tubes. Tubes are 24" long and can be		NAV
shortened if necessary	. Housing constructed 6061 anodized aluminum.		SVD01
			SVD
			OXS
	SCHROEDER INDUSTRIES	55	

RBSA Reservoir Breather Fluid Sampling Adapter

Contamination Sensor Module CSM 1000 Formally Known as "TSU - TestMate® Sensor Unit"

The Contamination Sensor Module (CSM) is an online condition monitoring system for detecting particle contamination in hydraulic and lubrication fluids containing a high proportion of air bubbles. Air bubble suppression is used to dissolve the air bubbles so that they are not detected as particles. Moreover, it is the ideal solution for analyzing the particle content of fluids, independently of the rest of the hydraulic system. As an option, other condition monitoring sensors such as the AS 1000 Series Water Sensor can be incorporated.

Applications

- Lubrication systems in paper, steel and energy sectors
- Preventive, pro-active preparation of service/intervals
- Monitoring of component cleanliness on test benches
- Monitoring of oil cleanliness in storage tanks

Basically there are three different possibilities for connecting the CSM to hydraulic and lubrication systems. Select the measuring point according to the type of information the customer requires from the system.

1. Measuring from tank

Indicates the overall condition of the oil. Inlet and outlet of the CSM are connected to the tank near the suction of the main pump.

2. Measuring from the pressure line before the filter

This is the normal location for taking bottle samples. By using the CSM the amount of bottle sampling can be reduced and information on the oil condition is therefore available immediately. This test point is used mostly in lube systems.

3. Measuring from pressure line after the filter

This test point is used in roll hydraulics and the reason for measuring oil after the filter is to ensure that clean oil is always available to the sensitive proportional valves and to other machine parts. Mainly used in roll hydraulics and particularly if customers have had problems with the proportional valves.

Important! The pressure should be reduced using a separate valve before the oil goes into the CSM.

CSM

Description

Retrofit System AMS, AMD **KLS, KLD** Installation LSN, LSA, LSW in System **X** Series

CSM

CSM 1000 Contamination Sensor Module

Formally Known as "TSU - TestMate® Sensor Unit"

Specifications				
•		Pump Type:	Gear pump	
	Ορ	Peration Pressure: P _{in} (INLET): P _{out} (OUTLET):	-5.8 - 7.3 psi (-0.4 to 0.5 bar) (stand -5.8 - 1,740 psi (-0.4 to 120 bar) (pu 73 psi (5 bar)	ard pump) ımp, pressure inlet stable)
	P	_{out} (leakage line):	7.3 psi (0.5 bar) (pump, pressure inle	et stable)
	Permissible	e Outlet Pressure:	73 psi (5 bar max.)	
		Connections:	INLET: Thread G 1/4, ISO 228 OUTLET: Thread G 1/4, ISO 228	
		Total Flow Rate:	approx. 100 mL/min (standard pump approx. 180 mL/min (pump, pressure	o) e inlet stable)
	Permissible Visc. Rang	ge for Measuring:	10 to 1000 cSt	
	Permissible Fl	uid Temp. Range:	32°F to 158°F (0°C to 70°C)	
	P	ermissible Fluids:	Hydraulic and lubrication fluids base	d on mineral oil
	Pow	ver Consumption:	0.18 kW @ 50 Hz	
	(<i>mo</i>)	tor pump group):	0.21 KW @ 60 HZ	
	Ampient Ten	nperature Range:	32°F (0 131°F (0°C (0 55°C)	
	Storage len	nperature Range:	-4°F to 185°F (-20°C to 85°C)	
	K	elative Humidity:	max. 90%, not condensing	
		IP Class:	1P55	
	Contamination Concorr	veight:	approx. 40 Ibs. (18 kg)	
	Contamination Sensor.	leasuring Range:	Display from class ISO 9/8/7 (MIN) up	o to class ISO 25/24/23
	Douvo	r Supply Voltago	(MAX) Calibrated within the range IS	SO 13/11/10 to ISO 23/21/18
	Powe	or Consumption:	3 W max	
	FUM	lectrical Outputs:	Analog output 4 to 20 mA or 0 to 1	0.1/
	L	lectrical outputs.	RS485 interface or switching output	
Model	How to Build a Valid N	lodel Number	for a Schroeder CSM:	
Model Number	How to Build a Valid N	lodel Number	for a Schroeder CSM:	
Model Number Selection	How to Build a Valid N BOX 1 BOX 2 BOX 3 CSM -	Iodel Number	for a Schroeder CSM: BOX 5 BOX 6	
Model Number Selection	How to Build a Valid N BOX 1 BOX 2 BOX 3 CSM Example: NOTE: One option per	Iodel Number	for a Schroeder CSM: BOX 5 BOX 6	
Model Number Selection	How to Build a Valid N BOX 1 BOX 2 BOX 3 CSM	BOX 4	for a Schroeder CSM: BOX 5 BOX 6	
Model Number Selection	How to Build a Valid N BOX 1 BOX 2 BOX 3 CSM	BOX 4 BOX 4 box BOX 4 BOX 4 M/N/	for a Schroeder CSM: BOX 5 BOX 6 BOX 5 BOX 6 X60/O60 - AS = CSM-122	20-1-1-W/N/X60/O60-AS
Model Number Selection	How to Build a Valid N BOX 1 BOX 2 BOX 3 CSM	BOX 4 BOX 4 box BOX 4 1 BOX 2	for a Schroeder CSM: BOX 5 BOX 6 BOX 5 BOX 6 BOX 5 BOX 6 X60/O60 - AS = CSM-122	20-1-1-W/N/X60/O60-AS
Model Number Selection	How to Build a Valid N BOX 1 BOX 2 BOX 3 CSM Example: NOTE: One option per BOX 1 BOX 2 BOX 3 CSM - 1220 - 1 BOX 1 BOX 1 Con	BOX 4 BOX 4 box BOX 4 - 1 BOX 2 tamination Code	for a Schroeder CSM: BOX 5 BOX 6 BOX 5 BOX 6 BOX 5 BOX 6 X60/O60 - AS = CSM-122	20-1-1-W/N/X60/O60-AS
Model Number Selection	How to Build a Valid N BOX 1 BOX 2 BOX 3 CSM	BOX 4 BOX 4 BOX 4 BOX 4 BOX 4 BOX 4 BOX 2 tamination Code 406:1999; SAE AS 2	for a Schroeder CSM: BOX 5 BOX 6 BOX 5 BOX 6 X60/O60 - AS = CSM-122 4059(D)	20-1-1-W/N/X60/O60-AS
Model Number Selection	How to Build a Valid N BOX 1 BOX 2 BOX 3 CSM	Iodel Number BOX 4 BOX 4 BOX 4 BOX 4 I W/N/ BOX 2 tamination Code 406:1999; SAE AS 4 406:1987; NAS 1638	for a Schroeder CSM: BOX 5 BOX 6 BOX 5 BOX 6 X60/O60 - AS = CSM-122	20-1-1-W/N/X60/O60-AS
Model Number Selection	How to Build a Valid N BOX 1 BOX 2 BOX 3 CSM Example: NOTE: One option per BOX 1 BOX 2 BOX 3 CSM - 1220 - 1 BOX 1 BOX 1 Model Con 1220 = ISO 4 1320 = ISO 4 BOX 3	BOX 4 BOX 4 box BOX 4 1 W/N/ BOX 2 tamination Code 406:1999; SAE AS 4 406:1987; NAS 1638 BOX 4	for a Schroeder CSM: BOX 5 BOX 6 $BOX 5 BOX 6$ $BOX 6$ $AS = CSM-122$ $BOS 5$ $BOX 5$ $BOX 5$ $BOX 5$	20-1-1-W/N/X60/O60-AS BOX 6
Model Number Selection	How to Build a Valid N BOX 1 BOX 2 BOX 3 CSM	BOX 4 BOX 4 BOX 4 BOX 4 BOX 4 1 W/N/ BOX 2 tamination Code 406:1999; SAE AS 2 406:1987; NAS 1638 BOX 4 Output	for a Schroeder CSM: BOX 5 $BOX 6$ AS = CSM-122 BOX 5 $BOX 6$ AS = CSM-122 BOX 5 $BOX 5$ $BOX 5$ $BOX 5$ $BOX 5$	20-1-1-W/N/X60/O60-AS BOX 6 Water Sensor
Model Number Selection	How to Build a Valid N BOX 1 BOX 2 BOX 3 CSM	BOX 4 BOX 2 tamination Code 406:1999; SAE AS 4 406:1987; NAS 1638 BOX 4 Output 1 = 4-20 mA ana	for a Schroeder CSM: $BOX 5 BOX 6$ $BOX 6$ $X60/O60 - AS = CSM-122$ $BOX 5$ $BOX 5$ $Electrical Supply$ $W/N/X60/O60 =$ $230/460 \lor 60Hz 3PH$ $230/400 \lor 50Hz 3PH$	20-1-1-W/N/X60/O60-AS BOX 6 Water Sensor Omit = None
Model Number Selection	How to Build a Valid N BOX 1 BOX 2 BOX 3 CSM Example: NOTE: One option per BOX 1 BOX 2 BOX 3 CSM - 1220 - 1 BOX 1 Model Con 1220 = ISO 4 1320 = ISO 4 1320 = ISO 4 BOX 3 Pump 1 = Standard gear pump 2 = Pump, increased inlet pressure with oil leakage pipe	BOX 4 BOX 4 box BOX 4 I W/N/ BOX 2 tamination Code 406:1999; SAE AS 4 406:1987; NAS 1638 BOX 4 I 406:1987; NAS 1638 BOX 4 2 2 1 400:1987; NAS 1638 BOX 4 Output 1 2 2 0-10 V analo	for a Schroeder CSM: BOX 5 BOX 6 BOX 5 BOX 6 X60/O60 AS = CSM-122 4059(D) BOX 5 BOX 5 Electrical Supply W/N/X60/O60 = 230/460 V 60Hz 3PH 230/400 V 50Hz 3PH L60 = 120V, 60Hz, 1Ph	BOX 6 Water Sensor Omit = None W = AS 1000 Water Sensor
Model Number Selection	How to Build a Valid N BOX 1 BOX 2 BOX 3 CSM Example: NOTE: One option per BOX 1 BOX 2 BOX 3 CSM - 1220 - 1 BOX 1 Model Con 1220 = ISO 4 1320 = ISO 4 1320 = ISO 4 BOX 3 Pump 1 = Standard gear pump 2 = Pump, increased inlet pressure with oil leakage pipe 4 = Pump, increased inlet pressure, no oil leakage line, magnetic drive What's Included	Iodel Number BOX 4 BOX 4 BOX 4 BOX 4 W/N/ BOX 2 tamination Code 406:1999; SAE AS 4 406:1987; NAS 1638 BOX 4 Output 1 = 4-20 mA ana 2 = 0-10 V analo	for a Schroeder CSM: BOX 6 BOX 5 BOX 6 X60/O60 AS = CSM-122 BOX 6 X60/O60 AS = CSM-122 BOX 5 BOX 5 BOX 5 Electrical Supply W/N/X60/O60 = 230/460 V 60Hz 3PH 230/460 V 50Hz 3PH L60 = 120V, 60Hz, 1Ph	BOX 6 Water Sensor Omit = None $W = \frac{AS 1000 Water}{Sensor}$
Model Number Selection	How to Build a Valid N BOX 1 BOX 2 BOX 3 CSM Example: NOTE: One option per BOX 1 BOX 2 BOX 3 CSM - 1220 - 1 BOX 1 Model Con 1220 = ISO 4 1320 = ISO 4 1320 = ISO 4 BOX 3 Pump 1 = Standard gear pump 2 = Pump, increased inlet pressure with oil leakage pipe 4 = Pump, increased inlet pressure, no oil leakage line, magnetic drive What's Included - CSM	Iodel Number 1 BOX 4 BOX 4 BOX 4 BOX 4 1 BOX 2 tamination Code 406:1999; SAE AS 4 406:1987; NAS 1638 BOX 4 Output 1 = 4-20 mA ana 2 = 0-10 V analo	for a Schroeder CSM: BOX 5 BOX 6 BOX 5 BOX 6 X60/O60 AS = CSM-122 4059(D) BOX 5 BOX 5 Electrical Supply W/N/X60/O60 = 230/460 V 60Hz 3PH 230/400 V 50Hz 3PH L60 = 120V, 60Hz, 1Ph Image: CD with FluMoS software and 1	BOX 6 Water Sensor Omit = None $W = \frac{AS 1000 Water}{Sensor}$ manuals

Schroeder Pro Total Fluid Life

				CSI-C-11
100 p.J	to stage	1 Al	Features &	HY-TRAX®
	and the of	-V-Q-V-	Benefits	RBSA
CONTRACTOR OF THE OWNER	Laser Particle Counter -	Oil Life Sensor - gives warning		CSM
A STATE OF THE STATE OF THE STATE	displayed as ISO, NAS, & SAE	inform if an oil change is required		TFL
the second second	Â			TFH
17	with			FCU
The second secon	Water Sensor - shows	Touch Screen - allows users		MCS
the second second	% saturation	functions with ease and		AS
		analyze data		SMU
A	W N			СТИ
A STATE OF A	Internal Coor Dum	with human for processing		ЕРК
	pressurized and non-	-pressurized vessels		Trouble
				Check Plus
	🔶 Part of the Schroede	r Industries 2030 Initiative		HMG2500
				HMG4000
The Schroeder Pro: Total Fluid Life is a	a state-of-the-art portable service un	it, designed to provide invaluable,	Description	ET-100-6
fluid users make informed decisions v	with regard to fluid replacement and	treatment planning.		НТВ
Measured Variables:	ISO Code / SAE Class / NAS Class / TA	N-Delta Number (Oil Life) / Saturation	Specifications	RFSA
	Level / Temperature			HFS-BC
Particulate Measurement Standards:	ISO 4406 (≥4(c) / ≥6(c) / ≥14(c) / ≥2	1(c)) , NAS 1638, SAE AS4059		HFS-15
Particle Counter Measuring Range:	Maximum ISO Code of 29	tion ICO MTD 2.9mg/l)		MFD-BC
Accuracy:	±0.5 ISO Code (Minimum concentra	ation ISO MITD 2.8mg/L)		MFS, MFD
Eluid Compatibility:	Mineral-based oils Synthethic oils	Organic oils, Diesel Fuels		HY-TRAX®
Dimensions (cover closed):	-(L) 16.2" x (D) 12.7" x (H) 6.7"	organic ons, preservices	Ret	rofit System
	(main device; accessory case: (L) 22.6	" x (D) 20.9" x (H) 8.0")		MFD-MV
Environmental Protection:	IP67 (cover closed)			MFS-HV
Maximum Ambient Humidity:	1P54 (cover open)	sing		AMS, AMD
Weight:	20.8 lbs. (9.45kg) (main device: acc	essory case: 19lbs. [8.6kg])		FS
Calibration Verification Frequency:	12 months recommended			AMFS
Operating Pressure:	36.3 psi (2.5 bar) Max.			KLS, KLD
Custom Duran	(5075 psi [350 bar] w/ adapter for p	pressurized lines)		МСО
System Pressure:	145 psi (10 bar) Max.	sure adapter)		AKS, AKD
Operating Temperature:	32°F to 122°F		LS	N, LSA, LSW
Eluid Temperature Range:	14°F to 131°F (oils)			X Series
· · · · · · · · · · · · · · · · · · ·	14°F to 122°F (diesel fuel)		C)LF Compact
Pump Type:	Gear			OLF
Duty Cycle:	Continuous			OLF-P
Connection:	1604 minimess test points, with 0.6m	i long 8mm tubing		NxTM
Power Supply Voltage:	115V AC			VEU
Nominal Battery Voltage:	15.0V DC			IXU
Charge Voltage:	16.8V DC			Triton-A
Charge Capacity:	5.2Ah			Triton-E
Charge Time:	2 hours (80%) / 5 hours (100%)			NAV
Run Time:	Up to 6 hours (viscosity dependent)			SVD01
Data Transmission:	Internet, USB			SVD

TFL Schroeder Pro Total Fluid Life

Model Selection

Included w/ Schroeder Pro

Schroeder Pro Series: High Pressure Adapter Sold Separately 7641529

Items Supplied

Schroeder Pro: Total Fluid Life Accessory Kit with included items: 120VAC Power Supply (charger)

- Hotplate
- Temperature probe
- Magnetic stirrer
- 100 mm wide funnel
- (2) 100 mL sampling bottles
- Sampling/vacuum pump
- USB memory stick
- (2) stoppers (8mm hole)
- Viscosity cup
- High-pressure device
- (2) solid stoppers
- (2) 500 mL flasks
- Storage compartment for hoses and cables

Schroeder Pro Total Fluid Health

				CSI-C-11
	the second	1-Ö+	Features & Benefits	HY-TRAX® RBSA
Contraction of the second	Laser Particle Counter -	Oil Life Sensor - gives warning of		CSM
	4, 6, 14, & 21 micron counts displayed as ISO, NAS, & SAE	oil life ending and also helps inform if an oil change is required		TFL
The set		VAVA		TFH FCU
To an and the second	Water Sensor - shows	Touch Screen - allows users to		MCS
	relative humidity of oil as % saturation	navigate operational functions with ease and analyze data		AS
A THE A		್ಧ್ರೆಗಳ್ಳಿ		SMU CTU
State State	Internal Gear Pump -	Digital Imaging - sensor sorts		FDK
	with bypass for processing	particles into fatigue, cutting,		
	pressurized and non- pressurized vessels	to estimate cause of contamination		Trouble Check Plus
4	Part of the Schroeder Industrie	es 2030 Initiative		HMG2500
The Schroeder Pro: Total Fluid Health is a	a revolutionary portable service u	unit, designed to measure and	Description	HMG4000
This real-time insight into the health of s	ynthetic, organic, and mineral oi	ils, as well as diesel fuel, helps users		ET-100-6
make informed decisions with regard to	fluid replacement and treatment	t planning.		НТВ
Measured Variables:	Particle Differentiation / ISO Cod	le / SAE Class / NAS Class / TAN-Delta	Constitutions	RFSA
	Number (Oil Life) / Saturation Le	vel / Temperature	Specifications	HFS-BC
Particulate Measurement Standards:	ISO 4406 (\geq 4(c) / \geq 6(c) / \geq 14(c) 1638, SAE AS4059	$1 / \geq 21(c) / \geq 38(c) / \geq 70(c) / \geq 100(c)$, NAS		HFS-15
Particle Counter Measuring Range:	Maximum ISO Code of 29			MED-BC
Accuracy:	±0.5 ISO Code (Minimum cond	centration ISO MTD 2.8mg/L)		
Operating Temperature Range:	32°F to 122°F			
Fluid Compatibility:	Mineral-based oils, Synthethic	oils, Organic oils, Diesel Fuels	R	etrofit System
Dimensions (cover closed):	(L) 16.2" x (D) 12.7" x (H) 6.7"			MFD-MV
	(main device; accessory case: (L)	22.6" x (D) 20.9" x (H) 8.0")		MFS-HV
Environmental Protection:	IP67 (cover closed) IP54 (cover open)			AMS, AMD
Maximum Ambient Humidity:	97% relative humidity, non-co	ndensing		FS
Weight:	26.5 lbs. (12.0kg) (main device	; accessory case: 19lbs. [8.6kg])		AMFS
Calibration Verification Frequency:	12 months recommended			KLS, KLD
iniet Pressure:	(5075 psi [350 bar] w/ adapter	for pressurized lines)		МСО
System Pressure:	145 psi (10 bar) Max.			AKS, AKD
Permissible Viscosity Range:	1-2400cSt (1-300 cSt with high	n pressure adapter)		LSN, LSA, LSW
Operating Temperature:	32°F to 122°F			X Series
Fluid Temperature Range:	14°F to 131°F (oils) 14°F to 122°F (diesel fuel)			OLF Compact
Pump Type:	Gear			OLF
Duty Cycle:	Continuous			OLF-P
Connection:	1604 minimess test points, with	0.6m long 8mm tubing		NxTM
Power Supply Voltage:	115V AC			VEU
Nominal Battery Voltage:	15.0V DC			IXU
Charge Voltage:	16.8V DC			Triton-A
Charge Capacity:	5.2Ah			Triton-E
Charge Time:	2 hours (80%) / 5 hours (100%)			NAV
Run Time:	Up to 6 hours (viscosity depende	ent)		SVD01
Data Transmission:	Internet, USB			SVD

TFH Schroeder Pro Total Fluid Health

Model Selection

Included w/ Schroeder Pro

Schroeder Pro Series: High Pressure Adapter Sold Separately 7641529

Items Supplied

Schroeder Pro: Total Fluid Life Accessory Kit with included items: 120VAC Power Supply (charger)

- Hotplate
- Temperature probe
- Magnetic stirrer
- 100 mm wide funnel
- (2) 100 mL sampling bottles
- Sampling/vacuum pump
- USB memory stick
- (2) stoppers (8mm hole)
- Viscosity cup
- High-pressure device
- (2) solid stoppers
- (2) 500 mL flasks
- Storage compartment for hoses and cables

Fluid Control Units - Portable Models

Formally Known as "TMU - TestMate® Monitoring Unit"

Features and Benefits

- Two contamination calibrations in one instrument (reversible)
- ISO 4406:1987; NAS 1638
- ISO 4406:1999; SAE AS 4059(D)
- Saturation and temperature measurement through the built-in AquaSensor (AS 1000)
- Integrated pump for measurement in pressureless reservoirs
- Operation with 24 VDC network adaptor included in scope of delivery
- Data storage capabilities
- Interfaces: 5-pole plug, Bluetooth, USB data port

Part of the Schroeder Industries 2030 Initiative

The FCU1310 combines the advantages of the portable contamination measurement units with the measurement technology of the Contamination Sensor (CS 1000) and AS 1000 Aqua Sensor.

The FCU is a portable service unit and is designed for measurement of solid particle contamination and water saturation in hydraulic systems. It is designed for temporary operation up to a maximum of 30 minute runtime followed by a rest period of 10 minutes and is not intended for continuous operation.

The FCU will measure contamination levels on mineral based hydraulic oils compatible with Viton[®] seals. The FCU is not compatible with water glycol fluids.

The integrated pump and the hoses with test point connections, which are included with the FCU, allow operation on pressureless reservoirs, control circuits, and high pressure circuits.

				etro
General Data:	Self-Diagnosis:	Continuously with error indication via status LED and display	Specifications	
	Measured Value:	ISO code / SAE Class / NAS Class / Saturation level / Temperature		
	Measuring Range:	Display from ISO code 9/8/7 (MIN) to ISO code 25/24/23 (MAX) Calibrated within the range ISO 13/11/10 to 23/21/18 Saturation level 0 to 100 % / Temperature -13°F to 212°F (–25°C to 100°C)		Д
	Accuracy:	\pm 1/2 ISO class in the calibrated range / \pm 2 % Full scale max.		
	Material of Sealings:	FPM Viton seals		
	Ambient Temperature Range:	32°F to 113°F (0°C to 45°C)		
	Storage Temperature Range:	-40°F to 176°F (-40°C to +80°C)		
	Dimensions (cover closed):	9″ H x 16″ L x 13″D		LSN.
	IP Class:	IP50 in operation IP67 closed		
	Weight:	Approx. 29 lbs (13 kg)		011
Hydraulic Data:	Operating Pressure:	IN: -7.25 to 650 psi (-0.5 to 45 bar) OUT: 0 to 7.5 psi (0 to 0.5 bar)		ULI
	with Adapter for Pressure Lines:	IN: 217 to 5000 psi (15 to 345 bar) OUT: 0 to 7.5 psi (0 to 0.5 bar)		
	Pressure Max.:	5000 psi (345 bar) (using included high pressure adapter)		
	Maximum Suction Height:	39 in (1 m)		
	Permissible Viscosity Range:	46 to 1622 SUS (10 to 350 cSt)		
	Fluid Temperature Range:	32°F to 158°F (0°C to +70°C)		
Electrical Data:	Power Supply Voltage:	24 VDC \pm 20%, residual ripple < 10%		
Ma	ax. Power / Current Consumption:	100 Watt / 4 A		
	Interface:	Plug connection, 5-pole, male, M12x1 and USB		

FluM Usable with FluMos Mobile App FCU Download and store measured data in real-time using FluMoS Mobile App via Bluetooth connection Description MS, AMD **KLS, KLD X** Series

FCU Fluid Control Units - Portable Models

Formally Known as "TMU - TestMate® Monitoring Unit"

Metallic Contamination Sensor Series MC

Formally Known as "TMS Metallic Contamination Sensor Serie

Features and Benefits

- Early detection of imminent gear unit damage
- Prevention of expensive plant downtime
- Optimal supplement to optical sensors
- Measurement of metallic particles (ferromagnetic and nonferromagnetic) > 70 µm
- Measurement result is not affected by air bubbles or liquid contamination in the liquid

Applications

HYDAC

- Gear boxes for wind energy
- Paper machine bearings
- Wind Turbines
- Marine Thrusters
- Industrial Gear Boxes
- Mobile Drive Systems
- Lubricating Systems
- Flushing Systems
- Test Standards
- Pumps

The Metallic Contamination Sensor MCS 1000 is used for measuring and recording metallic wear particles in fluids. An inductive measuring method is used to detect and count the particles and classify them according to their size and metallurgical properties (ferromagnetic/non-ferromagnetic). The MCS 1000 is therefore an ideal tool for the continuous condition monitoring of large industrial gearboxes, pumps or bearing systems, and provides early information on any early-stage damage.

The sensor can be used on its own or in combination with other condition monitoring devices such as vibration monitoring systems.

The MCS 1000 can therefore be easily integrated into condition-based or predictive maintenance approaches and it also helps to prevent unscheduled system downtimes.

Technical Details	MCS 15xx	MCS 14xx	MCS 13xx
Flow Rate	2.6 52.8 gpm (10 200 l/min)	0.5 10.6 gpm (2 40 l/min)	0.1 2.1 gpm (0.4 8 l/min)
Sensor Orifice Diameter	1" (25.4 mm)	1/2" (12.7 mm)	1/4" (6.3 mm)
Ferromagnetic (Fe) particles	> 200 µm	> 100 µm	> 70 µm
	Particle with volume	e equivalent to that of a	sphere with given Ø
Non-ferromagnetic (nFe) particles	> 550 µm	> 300 µm	> 200 µm
	Particle with volume	e equivalent to that of a	sphere with given Ø
Max. Particle Rate (particles/sec.; proportional to flow rate)	8 to 160	9 to 180	0 to 200

MCS	CS 1000
IVICS	CS 1939
ensor Series"	CSI-C-11
	HY-TRAX®
	RBSA
	CSM
	TFL
	TFH
3	FCU
	MCS
FluMoS	AS
MOBILE	SMU
Compatible with	СТИ
App when	ЕРК
connected to the	Trouble
C3I-C-11	Check Plus
	HMG2500
	HMG4000
	ET-100-6
	НТВ
	RFSA
	HFS-BC
Description	HFS-15
	MFD-BC
	MFS, MFD
R	HY-TRAX® Retrofit System
	MFD-MV
	MFS-HV
	AMS, AMD
	FS
Comparison	AMFS
	KLS, KLD
	МСО
	AKS, AKD
	LSN, LSA, LSW
	X Series
	OLF Compact
	OLF
	OLF-P
	NxTM
	VEU
	IXU
	Triton-A
	Triton-E
	NAV
CSI-C-11	SVD01
Product	SUDO

MCS Metallic Contamination Sensor Series

Formally Known as "TMS Metallic Contamination Sensor Series"

Dimensions Metric dimensions in ().

Туре	Α	В	С	D	E	F	G	н		J
13XX-X-1	120	113	83	53	38.1	17.5	ø8	70	60	M8
14XX-X-2	120	113	83	53	47.6	22.2	ø11.5	70	60	M8
15XX-X-3	162	106	83	38.5	52.4	26.2	ø11.5	80	55	M8
15XX-X-5	162	132	83	62	130	77.8	ø17.5	95	60	M8
15XX-X-6	120	106	83	38.5	69.9	35.7	ø13.5	90	35	M8

MCS13XX-X-1

Metallic Contamination Sensor Series

Formally Known as "TMS Metallic Contamination Sensor Series"

Diameter Sensor Cross-section: MCS 13ar: 147 (6mm) MCS 13br: 17 (25mm) MCS 15br: 17 (25mm) MCS 1	General Data: Ambient Temperature:	-40°F to 158°F (-40°C to +70°C)	Specifications	HY-TRAX ®
MCS 14x: 1/2 (13mm) MCS 15x: 1/2 (13mm) MCS 15x: 1/2 (55mm) CC Protection Class to DI 40050: WCS 15x: - 7.5 Int (-2.5 kg) MCS 15x: - 7.5 Int (-2.5 kg) MCS 15x: - 7.2 A (Matanow) HEM008-27.2 - 7.2 - 7.2 - 7.2 A (Matanow) HEM008-27.2 - 7.2 - 7.2 - 7.2 - 7.2 A (Matanow) HEM008-27.2 - 7.2 -	Diameter Sensor Cross-section:	MCS 13xx: 1/4" (6mm)		RBSA
Protection Class to DI N 40055 IF 7 Weight MCS 13xx - 5.6 lbs (2-3 kg) IF 7 Weight MCS 13xx - 5.6 lbs (2-3 kg) IF 7 Weight MCS 13xx - 5.6 lbs (2-3 kg) IF 7 MCS 14xx - 5.6 lbs (2-3 kg) MCS 14xx - 5.6 lbs (2-3 kg) IF 7 MCS 14xx - 5.6 lbs (2-3 kg) MCS 14xx - 5.6 lbs (2-3 kg) IF 7 MCS 14xx - 5.6 lbs (2-3 kg) MCS 14xx - 5.6 lbs (2-3 kg) IF 7 MCS 14xx - 5.6 lbs (2-3 kg) MCS 14xx - 5.6 lbs (2-3 kg) IF 7 MCS 14xx - 5.7 lbs (2-3 kg) MCS 14xx - 5.7 lbs (2-3 kg) IF 7 MCS 14xx - 5.7 lbs (2-3 kg) MCS 14xx - 5.7 lbs (2-3 kg) IF 7 MCS 14xx - 5.7 lbs (2-3 kg) MCS 14xx - 5.7 lbs (2-3 kg) IF 7 MCS 14xx - 5.7 lbs (2-3 kg) MCS 14xx - 5.7 lbs (2-3 kg) IF 7 MCS 14xx - 5.7 lbs (2-3 kg) MCS 14xx - 5.7 lbs (2-3 kg) IF 7 MCS 14xx - 5.7 lbs (2-3 kg) MCS 14xx - 5.7 lbs (2-3 kg) IF 7 MCS 14xx - 5.7 lbs (2-3 kg) MCS 14xx - 5.7 lbs (2-3 kg) IF 7 MCS 14xx - 5.7 lbs (2-3 kg) MCS 14xx - 5.7 lbs (2-3 kg) IF 7 MCS 14xx - 5.7 lbs (2-3 kg) MCS 14xx - 5.7 lbs (2-2 kg) MCS 14xx - 5.7 lbs (2-2 kg) MCS 14xx - 5.7 lbs (2-3 kg) MCS 14xx - 5.7 lbs (2-2 kg) MCS 14xx - 5.7 lbs (2-2 kg) MCS 14xx - 5.7		MCS 14xx: 1/2" (13mm)		CSM
Protection Lass to Div Audor. Weight MCS 15ac - 5.6 Bx (-2.5kg) Weight MCS 15ac - 7.5 Bx (-2.5kg) MCS 15ac - 7.5 Bx (-2.5kg) Environmenal Test: Vinction test (/stock test: Environmenal Test: MCS 15ac - 7.5 Bx (-2.5kg) Environmenal Test: Vinction test (/stock test: Environmenal Test: MCS 15ac - 7.5 Bx (-2.5kg) Environmenal Test: Vinction test (/stock test: Environmenal Test: MCS 15ac - 7.5 Bx (-2.5kg) Environmenal Test: Vinction test (/stock test: Environmenal Test: MCS 15ac - 7.5 Bx (-2.5kg) Environmenal Test: Wind power DW - Rerevoldes Cert. Main: DW - Type Approval Certification: Environmenal Test: Wind power DW - Rerevoldes Cert. Main: DW - Type Approval Center MCS 15ac - 2.6 By (-2.2 Kg) Environmenal Test: Wind power DW - Rerevoldes Cert. Main: DW - Type Approval Center MCS 15ac - 2.6 By (-2.2 Kg) Environmenal Test: Vind power DW - Rerevoldes Cert. Main: DW - Type Approval Center MCS 15ac - 2.6 By (-2.2 Kg) Environmenal Test: Vind power DW - Rerevoldes Cert. Main: DW - Type Approval Center MCS 15ac - 2.6 By (-2.2 Kg) Mydraulic Data: Flow Rate: MCS 15ac - 2.6 By (-2.2 Kg) Heatistic MCS 15ac - 2.6 By (-2.2 Kg) Mydraulic Data: Flow Rate: MCS 15ac - 2.6 By (-2.2 Kg) MC	Drotostion Class to DIN 40050	MCS ISXX: I (25mm)		TFL
Viegini, M.S. 1 Jac., 5.6 (b) 1–2.5.0) Viegini, M.S. 1 Jac., 5.6 (b) 1–2.5.0) Environmenal Tests Viegini, M.S. 1 Jac., 7.7 (b) (c) 5.50) M.S. 1 Jac., 7.7 (b) (c) 5.50) Environmenal Tests Viegini, M.S. 1 Jac., 7.7 (b) (c) 5.50) M.S. 1 Jac., 7.7 (b) (c) 5.50) Environmenal Tests Viegini, M.S. 1 Jac., 7.7 (b) (c) 5.50) M.S. 1 Jac., 7.7 (b) (c) 5.50 (c) 1.27 (c) 7.7 (c	Protection class to DIN 40050.	$MCS(13xx) = 6.6 \ln (-3ka)$		TFH
Environmenal Tests: Vitration test / Shock test: Environmenal Tests: Vitration test / Shock test: Environmenal Tests: Vitration test / Shock test: Environmenal Tests:	weight.	MCS 15xx: ~0.0 lbs (~3xg) MCS 14xx: ~5.6 lbs (~2.5kg) MCS 15xx: ~7 7 lbs (~3 5kg)		FCU
ENCOORE-22/-24 (Vibration) A ENCOORE-22/-237/-231 (Pack) Similar ENCOORE-22/-237/-231 (Pack) Similar ENCOORE-22/-238/2-78 Cimate test: ENCOORE-21/-22/-214/-230/2-38/2-78 Cimate test: Encoore-22/-24/4/-230/2-38/2-78 Cimate test: Certifications: Wind power DNRenewables Cert. Total Marine: DNV- Type Approval Chick Paul Chick Paul Certifications: Continuous, with error indication via Status ED and general operational readings in Device-ReadyLED Hindison Certifications: Continuous, with error indication via Status ED and general operational readings in Device-ReadyLED Hindison Maria: Continuous, with error indication via Status ED and general operational readings in Device-ReadyLED Hindison Maria: CC - Title 47 CR Pan 15 Hindison Notation: Flow Rate: KCS 13000-014/-627/-627 Flow Rate: KCS 13000-014/-627/-627 Minin MCS 13000-2010 Minin Minis MCS 13000-2010 Minin Mics 1300 Minin MCS 13000-2010 Minin Mics 1300 Mics 1300 MiniterRev Sof 62221 Configur	Environmenal Tests:	Vibration test / Shock test:		MCS
Endocode-27/1-21/21/21/21/21/21/21/21/21/21/21/21/21/2		EN60068-2-2 / -2-64 (vibration)		AS
BH6008-2-52 (all mist) Critices BH60082-25 (all mist) EF Certifications Wind power.DWL-Reproval Check TWL Self Diagnostis: Continuous, white more indication via Status LED and general operational readiness via Device-Ready-LED HM6250 Certifications: Continuous, white more indication via Status LED and general operational readiness via Device-Ready-LED HM6250 Certifications: Continuous, white more indication via Status LED and general operational readiness via Device-Ready-LED HM6250 Certifications: Continuous, white more indication via Status LED and general operational readiness via Device-Ready-LED HM6250 Certifications: Continuous, white more indication via Status LED and general operational readiness via Status LED and general operatio		Climate test:		SMU
Hotobes-2:1-2:2:7:2:1/3:1/7:2:307-2:38/2:7:8 EPR Certification: Wind power: DNV - Renewables Cert. Toubit Marine: DNV - Type Approval Certek Partice Cert. Certek Partice Cert. Self Diagnostics: Continuous, with error indication via Status LED and general operational machines via Device: Ready-LED HMG600 Wind power: DNV - Type Approval Certek Partice Cert. HMG600 Certek Partice Cert. Generation accordings via Device: Ready-LED HMG600 Certek Partice Cert. Generation according via Device: Ready-LED HMG600 Flow Rate: Flow Rate: MCS 13xx: 0.1-2.1 gpm (0.4-8 Umin) HHS-1 MCS 13xx: 0.1-2.1 gpm (0.4-8 Umin) HKS-15 HKS-15 MCS 13xx: 0.1-3.2 gpm (10-200 Umin) HKS-15 HKS-15 MCS 13xx: 0.1-3.2 gpm (0.4-8 Umin) HKS-15 HKS-15 MCS 13xx: 0.1-12: gpm (0.4-8 Umin) HKS-15 HKS-15 MCS 13xx: 0.1-2.1 gpm (0.4-8 Umin) HKS-15 HKS-15 MCS 13xx: 0.1-2.1 gpm (0.4-8 Umin) HKS-15 HKS-15 MCS 13xx: 0.1-12: gpm (0.4-8 Umin) HKS-15 HKS-15 MCS 13xx: 0.1-12: gpm (0.4-8 Umin) HKS-15 HKS-15 MCS 13xx: 0.1-12: gpm (0.4-		EN60068-2-52 (salt mist)		СТИ
CertificationsWind power: DNV - Renewables Cert. Marine: DNV - Type ApproxICheck PiuSelf DiagnosticsContinuous, with error indication via Status LED and general operational readness via Device-Ready-LEDHMG250CentraEkolobio-64 / 6-2 / 7-6-9HMG260(CentraKEN1000-64 / 7-6 / 7-9HMG260(Partice CentraKEN1000-64 / 7-6 / 7-9HMG260(Partice CentraKEN1000-7-2 / 700 / Mmin)HH5-1(Partice CentraKEN1000-7-2 / 700 / Mmin)HH5-1(MEC Data:Set 06 / 62 / 7KEN1000-700 / Mmin)(MES Data:KEN1000-700 / KEN100HH5-1(Partice CentraKEN100-700 / KEN100MF5-HF(Partice CentraKEN100-700 / KEN100MF5-HF(Partice CentraSet 1-7, SAE 1-7, SAE 2'', SAE 4''HF7-1000(MES Data:Stopply Voltage:18 - 36 VDC, residual ripple < 100%		EN60068-2-1 / -2-2 / -2-14 / -2-30 / -2-38 / 2-78 (temperature and humidity)		ЕРК
Self Diagnostic: Continuous, with error indication via Status LED and general general or generational readines via Device-Ready-LED HMC250 EN61000-64 / -5-21 / -5-9 (pube magnetic field immunity) / -4-29 (voltage dips) EF100-4-2-29 (voltage dips) Immunol Control Content Control Control Control Content Control	Certifications:	Wind power: DNV - Renewables Cert. Marine: DNV - Type Approval		Trouble Check Plus
ENG1000-F4/-F2/-6-9HMG400C CMark(C-Title 47 CFR Part 15FF100-Perform RateFCC - Title 47 CFR Part 15HT10-Pydraulic DataFlow RateFCC - Title 47 CFR Part 15HT10-Pydraulic DataFlow RateCCC - Title 47 CFR Part 15HT10-Powr RateMCS 13xx: 0.1-2.1 gpm (0.4-8 Urnin) MCS 15xx: 2.6-52.8 gpm (10-200 Urnin) MCS 15xx: 2.6-52.8 gpm (10-200 Urnin) MCS 15xx: 2.6-52.8 gpm (10-200 Urnin)HF5-EPermissible FluidHMG400HF5-EIntet/Outlet (flange connection according to ISO 676-1) MCS 15xx: SAE 172'' MCS 15xx: SAE 17, SAE 1-1/2', SAE 2'', SAE 4''HF5-EPermissible FluidHydraulic and lubrication fluids based on mineral oils as well as synthetic oils (c.p. oph-oeldier: no- Outputs:MF5-EExternal Electrical Data:Supply Voltage: S M max.18 - 36 VDC, residual ripple < 10%	Self Diagnostics:	Continuous, with error indication via Status LED and general operational readiness via Device-Ready-LED		HMG2500
Image: Control of the image in the indication of the image in the indication of the image in the indication of the image in the image indication of the image indite image indication of the image indite image indite		EN61000-6-4 / -6-2 / -6-9		HMG4000
Hydraulic Data: FCC – Title 47 CFR Part 15 HTT Hydraulic Data: Flow Rate: NCS 15xx: 0.1-2.1 gpm (0.4-8 l/min) MCS 15xx: 2.6-52.8 gpm (10-200 l/min) MCS 15xx: 5AE 17/* MCS 14xx: SAE 17/* MCS 14xx: SAE 17/* MCS 15xx: 5AE 17/* MCS 15	C E Mark:	(pulse magnetic field immunity) / -4-29 (voltage dips)		ET-100-6
Hydraulic Data:Flow Rate:MCS 13x: 0.1-2.1 gpm (0.4-8 l/min) MCS 14x: 0.5-10.6 gpm (2-40 l/min) MCS 15x: 5.6.2 8 gpm (10-200 l/min)MRSSOperating Pressure:290 psi (20 bar)HFS-BFluid Temperature Range:-40°F to 185°F (-40°C to +85°C)MFS-BInlet/Outlet (flange connection according to ISO 6162-1):MCS 15x: 5A E 12" MCS 15x: 5A E 12", SAE 1-172", SAE 2", SAE 4"MFS-BPermissible Fluids:Hydraulic and lubrication fluids based on mineral oils as well as synthetic oils (e.g. poly-orbitis)MFS-BExternal Electrical Data:Supply Voltage:18 - 36 VDC, residual ripple < 10%	FC Mark:	FCC – Title 47 CFR Part 15		HTB
MCS 15x:: 0.5-10.6 gpm (2-40 /min) MCS 15x:: 2.6-52.8 gpm (10-200 //min)HFS-B MCS 15x:: 2.6-52.8 gpm (10-200 //min)Inlet/Outlet (flange connection according to ISO 6162-1) Inlet/Outlet (flange connection according to ISO 6162-1) MCS 14x:: 0.5 4 E14" MCS 14x:: 5.4 E14" MCS 14x:: 5.4 E14" MCS 14x:: 5.4 E14" MCS 14x:: 5.4 E14" MCS 15x:: SAE 17", SAE 1-1/2", SAE 2", SAE 4" HYTRXX MCS 15x:: SAE 11", SAE 1-1/2", SAE 2", SAE 4" HYTRXX MCS 15x:: SAE 11", SAE 1-1/2", SAE 2.1", SAE 4" HYTRXX MCS 15x:: SAE 11", SAE 1-1/2", SAE 2.1", SAE 4" HYTRXX MCS 15x:: SAE 11", SAE 1-1/2", SAE 2.1", SAE 4" HYTRXX MCS 15x:: SAE 11", SAE 1-1/2", SAE 2.1", SAE 4" HYTRXX MCS 15x:: SAE 11", SAE 1-1/2", SAE 2.1", SAE 4" HYTRXX MCS 15x:: SAE 11", SAE 1-1/2", SAE 2.1", SAE 4" HYTRXX MCS 15x:: SAE 11", SAE 1-1/2", SAE 2.1", SAE 4" HYTRXX MCS 15x:: SAE 11", SAE 1-1/2", SAE 2.1", SAE 4" HYTRXX MCS 15x:: SAE 11", SAE 1-1/2", SAE 2.1", SAE 4.1" HYTRXX MCS 15x:: SAE 11", SAE 1-1/2", SAE 2.1", SAE 4.1" HYTRXX MCS 15x:: SAE 11", SAE 1-1/2", SAE 2.1", SAE 4.1" HYTRXX HYTRXX MCS 15x:: SAE 11", SAE 1-1/2", SAE 2.1", SAE 4.1" HYTRXX HYTRXX MCS 15x:: SAE 11", SAE 1-1/2", SAE 2.1", SAE 4.1" HYTRXX HYTRXX MCS 15x:: SAE 11", SAE 1-1/2", SAE 2.1", SAE 4.1" HYTRXX <br< td=""><td>Hydraulic Data: Flow Rate:</td><td>MCS 13xx: 0.1-2.1 gpm (0.4-8 l/min)</td><th></th><td>RFSA</td></br<>	Hydraulic Data: Flow Rate:	MCS 13xx: 0.1-2.1 gpm (0.4-8 l/min)		RFSA
InstructureInstructureInstructureQperating Pressure290 psi (20 bar)MES-BFluid Temperature Range-40°F to 185°F (-40°C to +85°C)MED-BInlet/Outlet (<i>Hange connection according to 150 6162-1)</i> MCS 13xx: SAE 1/2 " MCS 13xx: SAE 1'', SAE 2'', SAE 4 "METS-BRPermissible FluidsHydraulic and lubrication fluids based on mineral oils as well as synthetic oils (e.g., poly-e-olefins – PAO)MES-HRExternal Electrical Data:Supply Voltage:18 - 36 VDC, residual ripple < 10%		MCS 14xx: 0.5-10.6 gpm (2-40 l/min)		HFS-BC
Cup	Operating Pressure:	290 nsi (20 har)		HFS-15
Interval Electrical Data:Work 10 work 20 work	Eluid Temperature Bange:	-40° E to 185°E (- 40° C to $\pm 85^{\circ}$ C)		MFD-BC
MCS 14xx: SAE 34" MCS 15xx: SAE 1", SAE 1-1/2", SAE 2", SAE 4"HYTRAX Retrofit SystemPermissible Fluids: Hydraulic and lubrication fluids based on mineral oils as well as synthetic oils (e.g. poly-a-olefins – PAO)MFD-MIExternal Electrical Data:Supply Voltage: S V max.18 - 36 VDC, residual ripple < 10%	Inlet/Outlet (flange connection according to ISO 6162-1):	MCS 13xx: SAF 1/2"		MFS, MFD
Permissible Fluids:Hydraulic and lubrication fluids based on mineral oils as well as synthetic oils (e.g. poly-a-olefins – PAO)MFD-MU as synthetic oils (e.g. poly-a-olefins – PAO)External Electrical Data:Supply Voltage:18 - 36 VDC, residual ripple < 10%	······································	MCS 14xx: SAE 3/4" MCS 15xx: SAE 1", SAE 1-1/2", SAE 2", SAE 4"	R	HY-TRAX® etrofit System
External Electrical Data:Supply Voltage:18 - 36 VDC, residual ripple < 10%INFS-FRPower Consumption:5 W max.AMS, AMIInternal Electrical Data:2 Configurable:1 x Ferromagnetic particles (Fe)AMS, AMIInternal Electrical Data:2 Configurable:1 x Ferromagnetic particles (Fe)AMFOutputs:OR1 x Ferromagnetic particles (Fe) +AMFNon-ferromagnetic particles (Fe)1 x Status SignalMCCOR1 x Status SignalAKS, AKINon-ferromagnetic particles (Fe) +Non-ferromagnetic particles (Fe) +MCCNon-ferromagnetic particles (Fe)1 x Status SignalAKS, AKIOR1 x Status SignalX Status SignalKS, AKINon-ferromagnetic particles (Fe)1.5 A max.COLF CompaceRS485 Interface:Physical: 2 wire, half duplex; Protocol: HSI, Modbus RTUOLF CompaceMSI Interface (proprietary protocol):Physical: 1 wire, half duplex; Protocols: HSIOLFLength of Switching Pulse of Alarm Output:Adjustable, 5 to 200 msVEELength of Switching Pulse of Alarm Output:Adjustable, 5 to 200 msVEELength of Switching Pulse of Alarm Output:Physical: 108ase-T/ 1008ase-TX Protocol: HSI TOP/P, Modbus TCPTriton-CAN Interface:Physical: CAN; Protocol: CANopenTriton-	Permissible Fluids:	Hydraulic and lubrication fluids based on mineral oils as well as synthetic oils (e.g. poly- α -olefins – PAO)		MFD-MV
Power Consumption:5 W max.AMM, AMMInternal Electrical Data:2 Configurable:1 x Ferromagnetic particles (Fe)Ferromagnetic particles (nFe)Switching:1 x Non-ferromagnetic particles (nFe)AMM(active, normally-open):1 x Ferromagnetic particles (Fe) +KLS, KLINon-ferromagnetic particles (nFe)1 x Status SignalMCC1 x Status SignalCRAKS, AKUNon-ferromagnetic particles (nFe)MCC1 x Status SignalCR1 x Alarm signalLSN, LSA, LSV1 x Alarm signalLSN, LSA, LSV1 x Status SignalStatus signalAlarm Relays Capacity:1.5 A max.RS485 Interface:Physical: 2 wire, half duplex; Protocol: HSI, Modbus RTUOLHSI Interface (proprietary protocol):Physical: 1 wire, half duplex; Protocol: HSIOLF- Protocol: HSILength of Switching Pulse of Particle Signal:Adjustable, 5 to 200 msLength of Switching Pulse of Alarm Output:Adjustable, 30 to 86, 400 s, or continuously on to ResetLength of Switching Pulse of Alarm Output:Adjustable, 30 to 86, 400 s, or continuously on to ResetEthernet Interface:Physical: 1CB/ABC-TX Protocol: HSI TCP/IP, Modbus TCPCAN Interface:Physical: CAN; Protocol: CANopen	External Electrical Data: Supply Voltage:	18 - 36 VDC, residual ripple < 10%		IVIFS-HV
Internal Electrical Data:2 Configurable:1 x Ferromagnetic particles (Fe)Ferromagnetic particles (Fe)Switching:1 x Non-ferromagnetic particles (NFe)AMEOutputs:ORKLS, KLI(active, normally-open):1 x Ferromagnetic particles (Fe) +MCCNon-ferromagnetic particles (NFe)Non-ferromagnetic particles (NFe)MCC1 x Status SignalORMCC0 R1 x Status SignalMCC0 R1 x Status signalLSN, LSA, LSV1 x Alarm Relays Capacity:1.5 A max.Status signal1 x Status signal2.2 wire, half duplex; Protocol: HSI, Modbus RTUOL0 LPhysical: 2 wire, half duplex; Protocol: HSI, Modbus RTUOL0 LSwitching Log:Active Low or Active High (adjustable)OLF-1 Length of Switching Pulse of Particle Signal:Adjustable, 5 to 200 msVER1 Length of Switching Pulse of Alarm Output:Adjustable, 5 to 200 msVER1 Length of Switching Pulse of Alarm Output:Physical: 10Base-T / 100Base-TX Protocol: HSI TCP/IP, Modbus TCPTriton-/1 CAN Interface:Physical: CAN; Protocol: CANopenTriton-/	Power Consumption:	5 W max.		AMS, AMD
Outputs:ORKLS, KLI(active, normally-open):1 x Ferromagnetic particles (Fe) +Mon-ferromagnetic particles (nFe)MorNon-ferromagnetic particles (nFe)Non-ferromagnetic particles (nFe)Mor1 x Status SignalCRCRCR1 x Alarm signalLSN, LSA, LSWCR1 x Alarm Relays Capacity:1.5 A max.CEPhysical: 2 wire, half duplex; Protocol: HSI, Modbus RTUOLFCOLFCLPhysical: 2 wire, half duplex; Protocol: HSI, Modbus RTUCLCLSwitching Log: Active Low or Active High (adjustable)NxTMLength of Switching Pulse of Particle Signal:Adjustable, 5 to 200 msVEELength of Switching Pulse of Alarm Output:Adjustable, 30 to 86, 400 s, or continuously on to ResetVEEPhysical: 10Base-T / 100Base-TX Protocol: HSI TCP/IP, Modbus TCPPhysical: CAN; Protocol: CANopenTittor-f	Internal Electrical Data: 2 Configurable: Switching:	1 x Ferromagnetic particles (Fe) 1 x Non-ferromagnetic particles (nFe)		FS AMFS
Non-ferromagnetic particles (nFe)McC1 x Status SignalAKS, AKIOR1 x Status SignalOR1 x Alarm signal1 x Status signalLSN, LSA, LSV1 x Status signalX SterieAlarm Relays Capacity:1.5 A max.CAPhysical: 2 wire, half duplex; Protocol: HSI, Modbus RTUOLF Compace Protocol: HSI, Modbus RTUOLFCASwitching Log:Active Low or Active High (adjustable)NortherLength of Switching Pulse of Particle Signal:Adjustable, 5 to 200 msLength of Switching Pulse of Alarm Output:Adjustable, 30 to 86, 400 s, or continuously on to ResetPhysical: 10Base-T / 100Base-TX Protocols: HSI TCP/IP, Modbus TCPTriton-/CAN Interface:Physical: CAN; Protocol: CANopen	Outputs: (active, normally-open):	OR 1 x Ferromagnetic particles (Fe) +		KLS, KLD
1 x Status Signal ORAKS, AKI OR1 x Alarm signal 1 x Atarm signal 1 x Status signalLSN, LSA, LSV1 x Alarm Relays Capacity:1.5 A max.Alarm Relays Capacity:1.5 A max.Physical: 2 wire, half duplex; Protocol: HSI, Modbus RTUOLF CompactHSI Interface (proprietary protocol):Physical: 1 wire, half duplex; Protocol: HSIOLFProtocol: HSIActive Low or Active High (adjustable)OLFLength of Switching Pulse of Particle Signal:Adjustable, 5 to 200 msVEELength of Switching Pulse of Alarm Output:Adjustable, 30 to 86, 400 s, or continuously on to ResetIXPhysical: 10Base-T / 100Base-TX Protocols: HSI TCP/IP, Modbus TCPPhysical: CAN; Protocol: CANopenTriton-Protocol		Non-ferromagnetic particles (nFe)		МСО
Ix Alarm signal 1x Status signalLSN, LSA, LSVAlarm Relays Capacity:1.5 A max.X SerieRS485 Interface:Physical: 2 wire, half duplex; Protocol: HSI, Modbus RTUOLF CompaceHSI Interface (proprietary protocol):Physical: 1 wire, half duplex; Protocol: HSIOLFMulticationActive Low or Active High (adjustable)NxTNLength of Switching Pulse of Particle Signal:Adjustable, 5 to 200 msVEILength of Switching Pulse of Alarm Output:Adjustable, 30 to 86, 400 s, or continuously on to ResetIXPhysical: 10Base-T / 100Base-TX Protocols: HSI TCP/IP, Modbus TCPPhysical: CAN; Protocol: CANopenTriton-A		1 x Status Signal OR		AKS, AKD
1x Status signalX Status signalAlarm Relays Capacity:1.5 A max.RS485 Interface:Physical: 2 wire, half duplex; Protocol: HSI, Modbus RTUHSI Interface (proprietary protocol):Physical: 1 wire, half duplex; Protocols: HSISwitching Log:Active Low or Active High (adjustable)Length of Switching Pulse of Particle Signal:Adjustable, 5 to 200 msLength of Switching Pulse of Alarm Output:Adjustable, 30 to 86, 400 s, or continuously on to ResetPhysical: 10Base-T / 100Base-TX Protocols: HSI TCP/IP, Modbus TCPTriton-ACAN Interface:Physical: CAN; Protocol: CANopen		1x Alarm signal		.SN, LSA, LSW
Alarm Relays Capacity:1.5 A max.RS485 Interface:Physical: 2 wire, half duplex; Protocol: HSI, Modbus RTUOLF Compact OLFHSI Interface (proprietary protocol):Physical: 1 wire, half duplex; Protocols: HSIOLF-Switching Log:Active Low or Active High (adjustable)NxTNLength of Switching Pulse of Particle Signal:Adjustable, 5 to 200 msVEULength of Switching Pulse of Alarm Output:Adjustable, 30 to 86, 400 s, or continuously on to ResetIXUPhysical: 10Base-T / 100Base-TX Protocols: HSI TCP/IP, Modbus TCPTriton-ACAN Interface:Physical: CAN; Protocol: CANopenTriton-		1x Status signal		X Series
KS465 InterfacePrisical: 2 wire, half duplex, Protocol: HSI, Modbus RTUOLHSI Interface (proprietary protocol):Physical: 1 wire, half duplex; Protocols: HSIOLF-Switching Log:Active Low or Active High (adjustable)NxTNLength of Switching Pulse of Particle Signal:Adjustable, 5 to 200 msVEILength of Switching Pulse of Alarm Output:Adjustable, 30 to 86, 400 s, or continuously on to ResetIXINPhysical: 10Base-T / 100Base-TX Protocols: HSI TCP/IP, Modbus TCPPhysical: CAN; Protocol: CANopenTriton-	Alarm Relays Capacity:	1.5 A max.		OLF Compact
HSI Interface (proprietary protocol):Physical: 1 wire, half duplex; Protocols: HSIOLF-Switching Log:Active Low or Active High (adjustable)NxTNLength of Switching Pulse of Particle Signal:Adjustable, 5 to 200 msVEULength of Switching Pulse of Alarm Output:Adjustable, 30 to 86, 400 s, or continuously on to ResetIXIEthernet Interface:Physical: 10Base-T / 100Base-TX Protocols: HSI TCP/IP, Modbus TCPTriton-/CAN Interface:Physical: CAN; Protocol: CANopenTriton-/	K3465 Interface.	Protocol: HSI, Modbus RTU		OLF
Switching Log:Active Low or Active High (adjustable)NxTNLength of Switching Pulse of Particle Signal:Adjustable, 5 to 200 msVEILength of Switching Pulse of Alarm Output:Adjustable, 30 to 86, 400 s, or continuously on to ResetIXIEthernet Interface:Physical: 10Base-T / 100Base-TX Protocols: HSI TCP/IP, Modbus TCPTriton-JCAN Interface:Physical: CAN; Protocol: CANopenTriton-J	HSI Interface (proprietary protocol):	Physical: 1 wire, half duplex; Protocols: HSI		OLF-P
Length of Switching Pulse of Particle Signal:Adjustable, 5 to 200 msVEULength of Switching Pulse of Alarm Output:Adjustable, 30 to 86, 400 s, or continuously on to ResetIXUEthernet Interface:Physical: 10Base-T / 100Base-TX Protocols: HSI TCP/IP, Modbus TCPTriton-JCAN Interface:Physical: CAN; Protocol: CANopenTriton-J	Switching Log:	Active Low or Active High (adjustable)		NxTM
Length of Switching Pulse of Alarm Output: Adjustable, 30 to 86, 400 s, or continuously on to Reset IXI Ethernet Interface: Physical: 10Base-T / 100Base-TX Triton-/ CAN Interface: Physical: CAN; Protocol: CANopen Triton-/	Length of Switching Pulse of Particle Signal:	Adjustable, 5 to 200 ms		VEU
Ethernet Interface: Physical: 10Base-T / 100Base-TX Protocols: HSI TCP/IP, Modbus TCP Triton-/ CAN Interface: Physical: CAN; Protocol: CANopen Triton-/	Length of Switching Pulse of Alarm Output:	Adjustable, 30 to 86, 400 s, or continuously on to Reset		IXU
CAN Interface: Physical: CAN; Protocol: CANopen	Ethernet Interface:	Physical: 10Base-T / 100Base-TX Protocols: HSI TCP/IP, Modbus TCP		Triton-A
	CAN Interface:	Physical: CAN; Protocol: CANopen		Triton-E
USB Interface (only for service) Physical: mini USB; Protocol: propr	USB Interface (only for service)	Physical: mini USB; Protocol: propr		NAV
We do not guarantee the accuracy or completeness of this information. The information is based on average working conditions. For exceptional operating conditions please contact our technical department. All svi details are subject to technical changes.	We do not guarantee the accuracy or completeness or working conditions. For exceptional operating condi- details are subject to technical changes.	of this information. The information is based on average tions please contact our technical department. All		SVD01 SVD

MCS Metallic Contamination Sensor Series

AquaSensor AS

Features and Benefits

- Compatible with hydraulic, lube oils and synthetic and natural esters
- Measures and displays saturation and temperature continuously in real-time
- Measured in saturation percentage, not ppm. This is preferable since it takes into account temperature and viscosity variations (see desired saturation level below)
- Data can be monitored to PC, PLC, etc.
- No calibration necessary for different oils
- Individual configuration (AS 3000 only)
- Flumos Mobile App compatibility (AS 1000 only)

Applications

- Hydraulic systems that are sensitive to water in oil
- Gear boxes
- Injection molding machines
- Turbines

- Transformers
- Mobile Hydraulics
- OEM
- The AS sensors are online saturation and temperature sensors for the monitoring of hydraulic and lubrication fluids accurately and continuously. They measure the water content relative to the satur concentration (saturation point) and outputs the degree of saturation (saturation level) in the range 0 to 100% as a 4 to 20 mA signal. A reading of 0% would indicate the absence of water, while a of 100% would indicate that a fluid is free water. An integrated thermoelement on the sensor mea the temperature of the fluid in the range of -13°F to 212°F (-25°C to 100°C) and outputs it as a 4 to 20 mA signal.

The AS 3000 has a 4-digit, digital display that shows real-time measured values and allows for para adjustments. The digital display may also be rotated/aligned on two axes.

Since the effects of free and emulsified water are more harmful than those of dissolved water, water levels should remain well below the saturation point. However, even water in solution can cause damage and therefore every reasonable effort should be made to keep saturation levels as low as possible. As a guideline, we recommend maintaining saturation levels below 30% in all equipment.

If you have any guestions regarding technical details or the suitability of the AS sensors for your application, please contact our sales/technical department.

Metric dimensions in ().

AS 3000

Formally Known as "TestMate® Water Sensor" CSI-C-11				
	HY-TRAX®			
and a	RBSA			
	FluMoS CSM			
and the second	 Only the 			
AS 1000	AS 1000 is TFH			
	FluMoS Mobile FCU			
	App when MCS			
	the CSI-C-11. AS			
AS 3000	SMU			
	СТИ			
	ЕРК			
	Trouble			
	Check Plus			
	HMG2500			
	HMG4000			
monitoring of hydraulic and	ET-100-6			
er content relative to the saturation	Description			
n (saturation level) in the range of	RFSA			
moelement on the sensor measures	HFS-BC			
o 100°C) and outputs it as a	HFS-15			
	MFD-BC			
ared values and allows for parameter	MFS, MFD			
	HY-TRAX® Retrofit System			
those	Desired MFD-MV			
tion	Saturation MFS-HV			
Ore Saturation level Saturation	Level AMS, AMD			
s below ७५% क्षु	FS			
50%	AMFS			
nical	KLS, KLD			
2010	МСО			
U%	AKS, AKD			
	LSN, LSA, LSW			
	X Series			
	OLE Compact			

Formally Known as "TestMate® Water Sensor"

Specifications

Input Data	Measuring Range:	0 to 100% Saturation; -13°F to 21	2°F (25°C to 100°C)	
Operating Pressure:		-7.25 to 725 psi max (-0.5 to 50 bar)		
Burst Pressure:		9135 psi (630 bar) max		
	Parts in Contact with Media:	Connection Point: Stainless Steel/Ceramic with vacuum-metalized metal Seal: Viton = Mineral Oils/Esters, EPDM = Skydrol		
Output Data	Humidity Measurement:			
C	Output Signal (saturation level):	4 to 20 mA		
	Calibrated Accuracy:	\leq ± 2% FS max		
Acc	curacy in Media Measurements:	$\leq \pm$ 3% FS typ.		
	Pressure-dependent:	+ 0.02% FS/bar		
Output Data	Temperature Measurement:			
	Output Signal (temperature):	4 to 20 mA		
	Accuracy:	± 2% FS max		
Ambient Conditions	Nominal Temperature Range (saturation level measuring):	AS 1000 32°F to 194°F (0°C to 90°C)	AS 3000 32°F to 176°F (0°C to 80°C)	
	Ambient Temperature Range:	-40°F to 212°F (-40°C to 100°C)	-40°F to 176°F (-40°C to 80°C)	
	Viscosity Range:	32 to 23,175 SUS (1 to 5000 cSt)		
Flow Velocity: Media Tolerance:		< 16 ft/s	Maximum 16 ft/s	
		Mineral oil-based fluids, natural and synthetic esters		
CE Mark:		EN 50081-1, EN 50081-2, EN 50082-1, EN 61000-6-1-1/2/3/4		
Тур	e of Protection acc. DIN 40050:	IP 67		
Other Data	Supply Voltage:	12 to 32 VDC	18 to 35 VDC	
Residual Ripple Supply Voltage:		≤5%		
Mechanical Connection:		G3/8A DIN 3852		
Torque Rating:		18.5 ft-lbs		
	Electrical Connection: Pin 1: Pin 2: Pin 3: Pin 4: Pin 5:	M12x1, 5 pole (DIN VDE 0627) +Ub Signal saturation level 0V / GND Signal temperature HSI Interface: 1 wire, half duplex	Supply voltage: 18-35 VDC Analog output GND SP1 (alarm) SP2 (warning)	
FS (Full Scale)	relative to the full measuring ran	ige		
		-		

70 SCHROEDER INDUSTRIES

Sensor Monitoring Unit S

MU	

Features and Benefits

- Simple installation parallel to the customer system (Sensor Interface for SMU1200, transfer of the sensor's own analog and switching outputs) using the magnetic holder or top hat rails.
- High protection class IP67. Installation in a switch cabinet is not necessary
- Plug & Work unit including the 5m connection cable required for direct connection of the sensors (sensor connections via M12x1 male connectors, no programming necessary).
- Simple keypad operation.

- Contamination Sensor TCM and water sensor TWS-C
- Metallic Contamination Sensor TMS and water sensor TWS-C

≈2.4 in (≈62mm)

Metric dimensions in ().

	CS 1939
	CSI-C-11
\sim	HY-TRAX®
	RBSA
FluMoS	CSM
MOBILE	TFL
Mobile App	TFH
Download and	FCU
store measured data	in S MCS
Mobile App via	AS
Bluetooth connectior	SMU
	СТИ
	EPK
	Trouble
	Check Plus
	HMG2500
	HMG4000
	ET-100-6
	НТВ
Description	RFSA
	HFS-BC
	HFS-15
	MFD-BC
	MFS, MFD
	HY-TRAX®
Retro	ofit System
	MFD-MV
	MFS-HV
	AMS, AMD
	FS
	AMFS
	KLS, KLD
	МСО
	AKS, AKD
LSN	, LSA, LSW
	X Series
OL	.F Compact
	OLF
	OLF-P
	NxTM
	VEU
	IXU
	Triton-A
	Triton-E
	NAV
	SVD01

TestMate[®] Contamination Test Unit CTU

CS CS

Features and Benefits

- Cost reduction through lower production failure rates
- Identification and elimination of weak process steps
- Optimization of both internal and external handling processes
- Establishing of cleanliness standards, both internal and external
- Documentation of component cleanliness
- Survey of fluid cleanliness and filtration concepts

The Cleanliness Test Unit (CTU 1000) is designed to determine the technical cleanliness especially present on minor contaminated components. By determining the type, size and quantity of the contamination, quality standards can be checked and documented and the necessary steps towards optimization can be taken.

32.9 44.9 1835 1140) 60 (1500) 61 (1535) 35.8 38,8 (910) (985 CTU10 CTU12 Metric dimensions in (). CTU10xx 71 in x 39 in x 35 in (1800 mm x 985 mm x 835 mm) CTU12xx 71 in x 36 in x 45 in (1800 mm x 910 mm x 1140 mm) Overall Dimensions (H x W x L): Weight: CTU10xx: ≈ 595 lbs (270 kg) ≈ 640 lbs (290 kg) with ultrasonic unit
 CTU12xx: ≈ 685 lbs (310 kg)
 ≈ 728 lbs (330 kg) with ultrasonic unit

Mounting: Mobile (mounted on casters)

59°F to 82°F (15°C to 28°C)

Polished stainless steel

CTU10xx = 105 lbs (47.5 kg) CTU12xx = 105 lbs (47.5 kg)

and rinsing volume programmable

PC-controlled with user-friendly software, rinse options

Power Consumption: 600 W (800 W with ultrasonic)

Ambient Temperature:

Material of Cleanroom:

Max. Load Capacity:

Filling with Analysis Fluid: Via analysis cabinet

Control:

Cleanroom module

CTU Description **Retrofit System** AMS, AMD **KLS, KLD X** Series **Specifications**

Appendix

CTU TestMate[®] Contamination Test Unit

Specifications (cont.)	Reservoir and	Membrane Holder:	for ø1.85" (47 mm) to 1.97" (50 mm) filter membranes
	filtration module	Vacuum Strainer:	For quicker filtration of the analysis fluid
		Diffuser:	Distribution of analysis fluid on the membrane
		Operating Pressure:	-12 to 87 psi (-0.8 to 6 bar)
		Analysis Fluid Reservoir:	2x 5.3 gal (20 l) (1x reservoir, 1x suction reservoir)
		Reservoir Change-over:	Automatic
	Fi	tration of Analysis Fluid:	Fine filtration according ISO 4406 min. ISO 12/9
	Filt	er Size, Filtration Rating:	2x LF BN/HC 60, 3 μm (1xx0 series) 2x MRF-1-E/1, 1 μm (1xx1 series)
		Integrated Drip Tray:	6.6 gal (25 litre) with drainage
		Ultrasound:	100 W, 40KHz
		Dimensions:	Dimensions: 7.9" (200 mm) x 4.3" (110 mm) x 1.6" (40 mm); Mesh width: 0.16" (4 mm)
	Emissi	on Sound Pressure Level:	L _{PA} <70 db(A)
	Services to be provided by operator*	Compressed Air:	Air Filtered (min. 5µm) and dry compressed air, max. 1741 psi (6 bar) Air flow rate: 15.8 gpm (60 lpm), Supply connection: DN 7.2
	*Not supplied	Power Supply:	According to order
			for a Colored an CTU
Nodel Number	BOX 1 BOX 2	BOX 3 BOX 4 BOX 5	5 BOX 6 BOX 7 BOX 8
Selection	CTU		
	Example: NOTE: One BOX 1 BOX 2 CTU - 1 -	option per box BOX 3 BOX 4 BOX 5 - 2 - 4 - 0	$= \begin{bmatrix} BOX 6 & BOX 7 & BOX 8 \\ - & K & - & Z \end{bmatrix} = CTU1240KZZ$
	BOX 1	BOX 2	BOX 3
	Series	Model	Installation Size
	CTU = Contaminat Test Unit	ion 1 = Analysis Cabin (clean room)	et $0 = Dimensions analysis cabinet: 11.8"x30.2"x14.4"(300mm x 768mm x 365mm) (effective height xwidth x length)$
		BOX 4	2 - Dimensions analysis cabinet: 18.1"x30.2"x25.6"
	Analysis		(460mm x 768mm x 650mm) (effective height x width x length)
	filtration and a	automatic pressure control	BOX 5
	4 = Version 2014 – Compression closure, cleanbox – Internal extraction, cleanbox – filled via 3/2 way ball valve and filling hose – Monitor arm (only 124x) – Nozzles with plug-in connection (plug-in nipple in analysis chamber)		Analysis Fluid
			0 = Solvent A III Class (Flashpoint > 140°F (60°C), lower explosion limit > 0.6 Vol.%)
			1 = Water with surfactants, admissible pH-range 6 to 10, no deionized / demineralized water
BOX 6		OX 6	BOX 8
	Suppl	y Voltage	Supplementary Details
	K = 120 VAC / 60H	Iz / 1 Phase USA / CDN	Z = Standard
	M = 230 VAC / 50H	Iz / 1 Phase Europe	R = External rinsing connections 0.24" (Ø 6mm), between
	N = 240 VAC / 50H	Iz / 1 Phase UK	the hand holes E = Eluid connections A/B/C and B fitted with rapid quick
	BOX 7		release fastener on outside, Control line to CTM-E
	Extraction Pro	cess	modules
	Z = Spray (medium	n pressure)	A = Manual change-over for filter membrane holder

Note: Analyzing Fluid not supplied with unit - G60 Analyzing Fluid, 30L; PN 03205511

This information relates to the operating conditions and applications described. For applications or operating conditions not described, please contact the relevant technical department. Subject to technical modifications.

EasyTest Patch Kit EPK

Features and Benefits

- User-friendly visual analysis of solid contamination
- Compatible with mineral-based hydraulic fluids and lubricants, and petroleum distillates
- Enables solid contaminant quantification and identification
- Provides on-site results in a matter of minutes

Applications

- Perform quick on-site determination of contamination levels of solid particles
- Supplement on-site laboratories
- Use as a tool to demonstrate need for solid contamination mitigation

The Schroeder EasyTest Patch Kit (EPK) provides the necessary tools to determine the level of solid particulate contamination present in a fluid sample. Using the vacuum pump contained in the kit, the fluid sample is drawn through a membrane to photos of known

membrane patch. The residual par of known contamination levels in t	ticulate left on the patch is viewed ur the L-2711 Schroeder Contamination	nder a microscope and compared on Handbook (included).
		Comparison photo for cleanliness classes
	Schroeder Industries Fluid Control Contamination Handbook	150-446 Class 13/107
Schroeder: EasyTest Patch Kit (EPK)		Myndom 10 Steamen Star
7630322		

Kit as supplied inc	ludes:
Quantity	Description

Quantity	Description	P/N	
1	Hand-held vacuum pump	7619502	
3	Syringe, 30 mL	7626475	
50	Disposable Petri Dishes	7630320	
1	Forceps	7626481	
1	Membrane patches, 0.45 µm, 25 mm, (100 pack)	2701997	
1	Membrane patches, 0.8 µm, 25 mm, (100 pack)	2701952	
1	Carrying Case	7640195	
1	Microscope, 10x - 200x	7635242	NOTES
1	Plastic funnel	7626479	Solvent is not
1	Solvent dispenser bottle	7626473	supplied w/ the
1	Solvent dispenser bottle cap	7640496	solvents includ
3	Plastic sample bottle, 4 oz.	7626480	GLC), or lsopro
1	Solvent patch holder	7632471	Alcohol.
1	Tubing, Tygon 3"	7624738	Kit contents ar
1	10' section of 1/4" LDPE tubing	2701999	subject to char
1	L-2711 Contamination Handbook & Instructions	7627179	manufacturer.

	CSI-C-11
	HY-TRAX®
	RBSA
	CSM
	TFL
	TFH
	FCU
	MCS
	AS
	SMU
	СТИ
	ЕРК
	Trouble
Description	Check Plus
	HMG2500
	HMG4000
Model	ET-100-6
Selection +	НТВ
P/N 7640674	C RFSA
1/11/0400/4	HFS-BC
	HFS-15
	MFD-BC
	MFS, MFD
	HY-TRAX® Retrofit System
	MFD-MV
	MFS-HV
	AMS, AMD
	FS
	AMFS
	KLS, KLD
	МСО
	AKS, AKD
	LSN, LSA, LSW
	X Series
	OLF Compact
	OLF
	OLF-P
NOTES:	NxTM
Solvent is not supplied w/ the	VEU
EPK. Recommended solvents include	IXU
Heptane (99% by GLC), or Isopropyl	Triton-A
Alcohol.	Triton-E
Kit contents are	NAV
subject to change at the discretion of the	SVD01
	CV/D

Features and Benefits

- Easily performed determination of the absolute water content
- Direct comparison with the values measured in the lab thanks to the absolute water content being output in ppm
- High resolution in the lower measuring range
- Measurement series can be recorded for trend analysis
- Battery can be recharged via USB cable
- Illuminated display

Applications

- Perform quick on-site determination of contamination levels of water
- Supplement on-site laboratories
- Use as a tool to demonstrate need for water contamination mitigation

Description

The WaterTest Kit (WTK) is used for quantitative analysis of the absolute water content in mineral-oil-based lubricating and hydraulic fluids. The absolute water content is a measure of the actual water per volume of fluid. The measurement involves adding two reagents to the contaminated oil. This causes a pressure increase in the measurement cell that is output via the digital display as water content in vol. % or ppm.

Time per measurement: only approximately 5 minutes (without sample preparation).

Specifications	General Data:	Measuring Range:	0.02 to 1%* 0.1 to 5%* 100 to 1500 ppm* (0.01 to 0.15%) 200 to 6000 ppm* (0.02 to 0.6%) *) Measurement error < + 1.8 vol. % FS (full scale)
		Measurement data memory:	10 measurement series of 10 measurements each
		Weight including carry case:	2.7 kg
		Dimensions of carry case:	34 x 28 x 13.5 cm
	Hydraulic Data:	Permitted fluid:	Mineral-oil-based lubricating and hydraulic fluid
		Permitted fluid temperature:	158°F (70°C)
	Electrical Data:	Power Supply Voltage:	Internal battery rechargeable via USB cable

Model Selection + Items Supplied P/N 7640674

NOTES:

Replacement pack consisting of consumables sufficient for 50 tests can be ordered separately.

Kit as supplied inc	Kit as supplied includes:		
Quantity Description			
1	Aluminum case		
1	Measurement cell		
1	Bottle containing reagent A (500 mL)		
25	Sachet containing reagent B		
1	Measuring beaker (100 mL)		
1	Plastic tweezers		
3	Agitator (in plastic case)		
10	Syringe (1 mL)		
3	Syringe (5 mL)		
1	Test kit cleaner (250 mL)		
1	Operating and maintenance manual		
1	USB cable		

Trouble Check Plus Fluid Analysis

Schroeder's Trouble Check Plus is an easy to use fluid analysis service that can be utilized as part of any predictive maintenance program.

Schroeder offers two types of sample kits: one for hydraulic fluid (Description: THF P/N: 7624310) and one for water glycol (Description: TWG P/N: 7624741). Refer to the next section for tests performed for each of these kits. Upon receipt of order for any of these part numbers, a sample kit containing a clean sample bottle, blank form, and mailing container is shipped to the customer. After the sample has been taken, the customer simply completes the form and encloses it along with the sample in the mailing container provided. Kits are packaged and sold in lots of 10.

THF Sample Report Form

For each sample submitted, a lab report will be generated and forwarded directly to the user via e-mail or postal mail (per the user's request). Schroeder will maintain an electronic copy of all results for a two year period. It is strongly recommended that a MSDS (Material Safety Data Sheet) and a base line (unused) fluid sample be submitted with the initial sample to be analyzed. In addition to serving as a baseline for comparison to subsequent results, the sample of new oil will be used to determine warning limits for viscosity and TAN (total acid number).

Oil sample reports can be tracked online at: http://www.trackmysample.com/

Customers can create their own personal login and password to view all of their reports in one easy to use interface at: http://eoilreports.com/

Information gained by using this service can help identify potential problems in a hydraulic system at minimal cost to the user. Fluid analysis can provide answers to important questions such as these:

- Do I have the right filtration system in place for efficient contamination control?
- Is the fluid in my system experiencing changes that could negatively impact component life or system performance?

	Total Conditioning Analysis Kit (Description: THF P/N: 7624310)	Water Glycol Kit (Description: TWG P/N: 7624741)
Particle Count		Patch Test
ISO 4406 Cleanliness Code	√	Estimated
Water Content	A	
Viscosity	1	
TAN	A	
Spectrographic Analysis	4	

Particle Count and ISO Codes

Particle contamination is responsible for most of the wear in hydraulic systems. The level of contamination is determined automatically by a laser particle counter. The results are shown as the cumulative counts per milliliter of fluid according to ISO 4406:1999. (For water glycol fluids the patch test photo is used to estimate the ISO code). The current sample ISO code is displayed with the target ISO code. The target is based on the cleanliness level required for the most sensitive component in the system. An increase of 1 ISO digit is considered a caution limit and an increase of two ISO digits is critical. When the target ISO code is exceeded, improvement of the system filtration, elimination of the source of ingression or installation of auxiliary off-line filtration is required.

Water Content

High water content in oil encourages oxidation, corrosion and cavitation. The Karl Fischer Method in accordance with ASTM D 6304-04a determines the water content, which is displayed in percent (% or ppm). (Water glycol fluids normally have upper and lower limits that are set to manufacturer's specifications). Graphing results are available on-line. In general, water contents of up to 500 ppm are typically not critical for the operation of hydraulic and lubrication systems. When the water content exceeds approximately 500 ppm, the system should be protected against water penetration and measures should be introduced to extract water from the oil.

Viscosity

Maintaining the correct viscosity is important for achieving long component service life. Viscosity is reported in centistokes (cSt) @ 40° and 100°C as per ASTM D 445-04. Typically the limits are based on new oil data. Caution limits are calculated at $\pm 10\%$ new oil viscosity and critical limits at $\pm 15\%$ new oil viscosity. (Water glycol fluids can have limits set similarly but the water content should also be monitored as changes in it also affect the viscosity. The manufacturer should be consulted). Trending graphs are available on-line for all reported results. When large changes in viscosity are detected a partial drain of the affected oil and adding fresh fluid may correct the problem. However in some instances a complete oil change may be required.

Part Numbers and Tests Performed

Explanation

of Results

Description

MFS, MFD HY-TRAX® rofit System MFD-MV MFS-HV AMS, AMD FS AMS, AMD KLS, KLD MCO AKS, AKD N, LSA, LSW X Series DF Compact OLF OLF-P NxTM VEU IXU Triton-A Triton-E NAV

Appendix

CS 1000

CSI-C-11

EPK

Trouble Check Plus Fluid Analysis

Explanation of Results

Total Acid Number (TAN) *not applicable to Description: THF P/N: 7624310

Oxidation is the primary mechanism of oil degradation. The TAN measures the corrosive acidic by-products of oxidation. TAN results are reported in mg/g KOH (Potassium Hydroxide). Since all hydraulic fluids have some inherent acidic properties any increases in TAN must be compared to the new oil value as a baseline. Typically caution limits are set at +0.6 new oil value and critical limits are set at +1.0 new oil value. Certain application specific fluids may require limits set to manufacturer specifications. The results are graphed along with the limits to clearly show when oil oxidation has increased above acceptable levels. When the TAN has increased above the critical level, the oil should be changed immediately to prevent damage from occurring to your equipment.

Spectrographic Analysis *not applicable to Description: TWG P/N: 7624741

Additive, wear metal and contaminant levels are displayed in parts-per-million (ppm). The oil sample is analyzed for eighteen different elements. The results are also graphically displayed for easy detection of increasing or decreasing levels. The manufacturer blends additives into the oil in different forms and quantities. The additive package varies with the oil type. Wear metals indicate wear on particular components of an individual unit. These metals will indicate a wear problem on the microscopic level (< 8 microns) before the problem can be detected by conventional means. The existence of a wear problem is determined by absolute values of metals, and more importantly, by a relative increase or trend in one or more metals. Contaminants can be an indicator of internal or external contamination. The source and amount can be determined by a comparison with new oil data. Below is a list of additive types, wear metal and contaminant sources.

Additives	Function
Magnesium (Mg)	Dispersant / Detergent
Calcium (Ca)	Dispersant / Detergent
Barium (Ba)	Dispersant / Detergent
Zinc (Zn)	Anti-Wear
Molybdenum (Mo)	Anti-Wear
Phosphorous (P)	Anti-Wear
Wear Metals	Typical Source
Titanium (Ti)	Turbine Components, Bearings, Platings
Chromium (Cr)	Rings, Roller/Taper, Bearings, Rods, Platings
Iron (Fe)	Cylinders, Gears, Rings, Crankshafts, Liners, Bearings, Housings, Rust
Nickel (Ni)	Valves, Shafts, Gears, Rings, Turbine Components
Copper (Cu)	Bearings, Bushings, Bronze, Thrust-Washers, Friction Plates, Oil Cooler
Silver (Ag)	Bearings, Bushings, Platings
Aluminum (Al)	Pistons, Bearings, Pumps, Blowers, Rotors, Thrust-Washers, Dirt
Lead (Pb)	Bearing Overlays, Grease, Paint, Possible Additive in Gear Oils
Tin (Sn)	Bearings, Bushings, Piston Platings, Solder, Coolers
Vanadium	
Cadmium	
Contaminants	Typical Source
Sodium (Na)	Coolant, Sea Water, Dirt, Possible Additive
Boron (B)	Coolant, Sea Water, Possible Additive
Silicon (Si)	Dirt, Possible Additive (Anti-Foam)
Potassium (K)	

Status and Recommendations

Corrective actions are recommended when applicable. The status of the sample is rated in three categories:

	Normal	- System is operating within the parameters established by baseline data & prior samples. - System requires no immediate action.
	Abnormal	 System is operating outside of caution limits in one or more areas. System requires scheduled maintenance.
_		

Critical
 System is operating outside of critical limits in one or more areas.
 System requires immediate attention.

Model Number Selection

woder Code	
Description: THF P/N: 7624310	Total Conditioning Analysis Kit
Description: TWG P/N: 7624741	Water Glycol Kit

NOTES:

Sample kits sold in case lots of 10 pieces. No samples will be processed without completed paperwork supplied with kits. adal Cada

TestMate[®] Series HN

ΛG	2500	CS CS

|--|

Features and Benefits

- Simple and user-friendly operation
- Large, full color graphics display
- Quick and independent basic setting by use of automatic sensor recognition
- HMG 2500 can only be used with Schroeder HSI and Schroeder SMART sensors
- Up to 4 sensors and 32 measurement channels can be connected simultaneously
- Sampling rates up to 0.1 ms
- Very large data memory for archiving measurement curves
- Various measurement modes: Normal measuring, Fast curve recording, Long-term measurement
- 2 independent triggers, can be linked logically
- Simple sensor connection with M12x1 push-pull connector
- PC connection: USB and RS 232
- Convenient visualization, archiving and data processing using the HMGWIN software supplied

Automated setting procedures, a simple, self-explanatory operator guide and many comprehensive functions ensure the operator is able to carry out a wide range of measurement tasks within a very short time. This makes the HMG 2500 an ideal companion for employees in maintenance, commissioning and service.

The device is designed primarily to record pressure, temperature and flow rate values, which are the standard variables in hydraulics and pneumatics. For this purpose, special sensors are available. The HMG 2500 recognizes the measured variable, measuring range and the unit of these sensors and automatically carries out the basic device settings accordingly.

In addition to this, the HMG 2500 has a digital input, e.g. for frequency or speed measurement, as well as a virtual measurement channel for the measurement of difference or performance.

Due to the wide range of functions and its simple handling, the HMG 2500 is just as appropriate for users who take measurements only occasionally as it is for professionals for whom measuring and documentation are routine.

The HMG 2500 is designed to accept future upgrades of the device software.

	Trouble Check Plus
	HMG2500
	HMG4000
Description	ET-100-6
	НТВ
	RFSA
	HFS-BC
	HFS-15
	MFD-BC
	MFS, MFD
	HY-TRAX® Retrofit System

MFD-MV MFS-HV

AMS, AMD

C.1

KLS, KLD

MCO

AKS. AKD

LSN, LSA, LSW

X Series

OLF Compact

OLF

OLF-P

NxTM

VEU

Tuiter A

Triton-E

NAV

SVD01

SVD

HMG 2500 TestMate[®] Series

Dimensions

Shown with protective cover open

Function

- Clear and graphical selection menus guide the operator intuitively to all the device functions available. A navigation pad on the keypad ensures rapid operation
- The HMG 2500 can monitor signals from up to 4 sensors simultaneously.
- The following sensors can be connected to 3 of these input sockets:
 - 3 analogue sensors (e.g. for pressure, temperature and flow rate) with the special digital HSI interface (Sensor Interface); this means the basic device settings (measured variable, measuring range and unit of measurement) are undertaken automatically
 - 3 analogue sensors (e.g. for pressure, temperature and flow rate) with the special digital HSI interface (Sensor Interface); reference HSI information above
- Frequency measurements, counter functions or triggers for data logging can be implemented via the fourth input socket with one digital input
- Additionally, the HMG 2500 has a virtual measurement channel which enables a differential measurement or a performance measurement by means of the sensors connected to the measurement channels "A" & "B"
- All input channels can operate simultaneously at a sampling rate of 0.5 ms (1.0 ms for SMART sensors). For the recording of highly dynamic processes, a sampling rate of 0.1 ms can be achieved
- The most impressive function of the HMG 2500 is without doubt its ability to record dynamic processes as a measurement curve "online", i.e. in real-time, and to render them as graphs in the field
- The data memory for recording curves or logs can hold up to 500,000 measured values per recording. Over 100 of such data recordings in full length can be stored in an additional archiving memory
- For specific, event-driven curves or logs, the HMG 2500 has two independent triggers, which can be linked together logically
- User-specific device settings can be stored and re-loaded at any time as required. This means that repeat measurements can be carried out on a machine again and again using the same device settings
- Measured values, curves or texts are visualized on a full color graphics display in different selectable formats and display forms
- Numerous useful and easy-to-use auxiliary functions are available, e.g. zoom, ruler tool, differential value graph creation and individual scaling, which are particularly for use when analyzing the recorded measurement curves

TestMate[®] Series HMG 2500

	CSI-C-11
Software	HY-TRAX®
	RBSA
	CSM
	TFL
	TFH
	FCU
	MCS
	AS
	SMU
	СТИ
	EPK
	Trouble Check Dive
	Check Plus
	HMG2500
	HIVIG4000
	E I- 100-0
	HES-RC
	HFS-15
	MFD-BC
	MFS, MFD
	HY-TRAX® Retrofit System
	MFD-MV
	MFS-HV
	AMS, AMD
	FS
	AMFS
	KLS, KLD
	МСО
	AKS, AKD
	LSN, LSA, LSW
	X Series
	OLF Compact
	OLF
	ULF-P
	VELL
	IXU
	Triton-A
	Triton-E
	NAV
	SVD01
	SVD
	OXS
	Appendix

The HMG 2500 communicates with a computer via a USB or RS 232 port. Schroeder offers HMGWIN 2500, the matching software for the HMG 2500, for convenient post-processing, rendering, and evaluation of measurements on a pc. It also enables the HMG 2500 to be operated directly from a computer in real time.

The HMG 2500 is equipped with specially developed software providing for fast data collection and processing. A measurement curve can comprise up to 500,000 measured values. The HMG 2500's measured value memory is capable of storing at least 100 of these curves.

The Schroeder software, CMWIN, is also supplied that allows direct communication with SMART (HSI) sensors connected to the HMG 2500 from your PC.

Some examples of the numerous useful additional functions:

- Transfer and archiving of measurements recorded using the HMG 2500
- Display of the measurements in graph form or as a table
- Zoom function: Using the mouse, a frame is drawn around an interesting section of a measurement curve, which is then enlarged and displayed
- Accurate measurement of the curves using the ruler tool (time values, amplitude values and differentials)
- Individual comments and measurement information can be added to the graph
- Overlay of curves, for example to document the wear of a machine (new condition/current condition)
- Using mathematical operations (calculation functions, filter functions), new curves can be added
- Snap-shot function: Comparable to the function of a digital camera, a picture can be taken immediately of any graph and saved as a .jpg file
- A professional measurement report can be produced at the click of a mouse: HMGWIN has an automatic layout function. Starting with a table of contents, all recorded data, descriptions and graphics and/or tables are combined into a professional report and saved as a .pdf file
- Online function (HMGWIN only): Starting, recording, and online display of measurements (similar to the function of an oscilloscope)
- Change of axis assignment of the recorded measurement parameters in graph mode (e.g. to produce a p-Q graph)

HMG 2500 TestMate[®] Series

Technical Data

HSI analogue sensors	
HSI SMART sensors	
<u>≤ +</u> 0.1% FS	
Digital status (high/low) Frequency (0.01 to 30,000 Hz)	
1 channel via virtual channel E	
0.1 ms, max. 1 input channel 0.2 ms, max. 2 input channels 0.5 ms, all 3 input channels 1.0 ms, for SMART sensors	
12 bit	
Min. 100 measurement curves, each with 500,000 measured values	
3.5″ color display 7-segment display	
1 USB, 1 serial interface RS 232	
EN 61000-6-1 / 2 / 3 / 4	
EN 61010	
IP 40	
32°F to 122°F (0°C to 50°C)	
-4°F to 140°F (-20°C to 60°C)	
70%, non-condensing max	
approx. 2.43 lb (1.1 kg)	

Order Details

Model Code Description: HMG 2500 - 000 - US P/N 925295

Operating manual and documentation

US = English

Scope of delivery

- HMG 2500
- Power supply for 90 to 230 V AC
- Operating Instructions
- Data carrier with USB drivers. HMGWIN software
- USB connector cable

Accessories

Additional accessories, such as electrical and mechanical connection adapters, power adapters, etc. can be found in the "Accessories for HMG Series" catalog pages.

TestMate[®] Series HMG 4000

Features and Benefits

- Large, full graphics color display 5.7" touch screen
- Capable of recording up to 38 sensors at once, 8 analog, 2 digital sensors and 28 HSCI sensors via CAN bus
- Up to 100 measurement channels can be depicted simultaneously
- High-speed measuring rate, up to 8 sensors at 0.1 ms at a time
- Rapid and automatic basic setting of the device by means of automatic sensor detection
- Analog inputs 0.. 20 mA, 4 .. 20 mA Voltage 0 .. 50V, -10 .. 10 V
- PT 100/1000 input
- Connection to a CAN bus system (also J1939)
- Simple and user-friendly operation, intuitive menu
- Very large data memory for archiving measurement curves enables the storage of 500 measurements with up to 8 Million measured values
- Various measurement modes: Measuring, Fast curve recording, Long term measurements
- Recording of dynamic processes "online" in real time
- Event-driven measurements with several triggering options
- PC interface via USB
- USB Host connection for USB memory sticks
- Convenient visualization, archiving and data processing using the HMGWIN software

The HMG 4000 hand-held measuring unit is a portable measuring and data logging device. It was mainly developed for all values measured in relation with hydraulic systems, such as pressure, temperature, flow rate and position. Moreover, it provides a very high flexibility, even when it comes to evaluating other measuring values. The main applications are servicing, maintenance or test rigs.

The HMG 4000 has a very easy-to-operate user interface due to its large 5.7" touchscreen. The operator can access all of the unit's functions and settings by means of clearly presented selection menus.

The HMG 4000 can record the signals of up to 38 sensors at once. For this purpose, Schroeder Industries offer special sensors, which are automatically detected by the HMG 4000 and whose parameters such as measurement values, measuring ranges and measuring units can be set.

On the one hand, there are the HSI Sensors (Sensor Interface) for the measurement of pressure, temperature and flow rate, for the connection of which there are 8 analog input channels. Furthermore, there is the option of connecting Schroeder SMART sensors to these inputs. SMART senors can display several different measured variables at a time.

Up to 28 special HCSI-Sensors (CAN Sensor Interface) can be connected additionally via the CAN bus Port, also supporting automatic sensor detection.

HMG 4000 can optionally be connected to an existing CAN network. This enables the recording of measured data transmitted via CAN bus (e.g. motor speed, motor pressure) in combination with the measured data from the hydraulic system.

The device also offers measurement inputs for standard sensors with current and voltage signals. The HMG 4000 rounds off the application, providing two additional digital inputs (e.g. for frequency or rpm measurements)

The most impressing feature of the HMG 4000 is its ability to record the dynamic processes of a machine in the form of a measurement curve and render them as a graph — and, moreover, online and in real-time.

Schroeder software HMGWIN which is specific to the HMG 4000, is supplied for convenient postprocessing, rendering and evaluation of measurements on your computer.

C
EP
Troubl
Check Plu
HMG250

HMG4000

Description

Retrofit System KLS, KLD

X Series

TestMate[®] Series

Function

MG 4000

Clear and graphical selection menus intuitively guide the operator to all the device functions available and ensure fast implementation.

- HMG 4000 can detect the signals of up to 38 sensors simultaneously. 11 Push-pull M12x1 input sockets are available as sensor interfaces. Apart from the push-pull sensor connection cable, M12x1 standard cables can also be used.
- The following sensors can be connected to 8 of these input sockets:
 - 8 analogue sensors (e.g. for pressure, temperature and flow rate) with the special digital HSI interface (Sensor Interface); this means the basic device settings (measured variable, measuring range and unit of measurement) are performed automatically.
 - 8 standard analog sensors with current and voltage signals
 - 8 condition monitoring sensors (SMART sensors), the basic device settings are also performed automatically.
- The blue input socket provides 2 digital inputs, i.e. for 1 or 2 speed sensors (2nd speed sensor connection via Y adapter). Frequency measurements, counting functions or triggers can as well be implemented for data recording.
- Different CAN bus functions can be utilized via the red input socket.
 - Connection of up to 28 HCSI sensors (CAN Sensor Interface) by setting up a CAN bus with HCSI sensors and the relevant connection accessories, also with automatic parameterization.
 - Connecting to a CAN bus, you have the option of evaluating up to 28 CAN messages
 - Configuration of CAN Sensors, the parameterization is performed by means of EDS files, which can be stored and administrated in the HMG 4000
- The yellow input socket serves as the interface for pressure, temperature or level switches with I/OLink as well as for the programming device HPG P1. These devices can be parameterized by means of the HMG 4000.
- The most impressive function of the HMG 4000 is its ability to record dynamic processes "online", i.e. in real-time, as a measurement curve and to render them as graphs. During the recording process of a measuring curve, you can zoom in the curve sections of interest using gestures on the touchscreen.
- For the purpose of recording highly dynamic processes, all 8 analog input channels can be operated simultaneously at a measuring rate of 0.1 ms.
- The data memory for the recording of curves or logs can memorize up to 8 million measured values. At least 500 of such data recordings in full length can be stored in an additional archiving memory.
- For the targeted event-driven curve or log recording, the HMG 4000 has two independent triggers which can be linked together logically. In addition, there is a "start/stop" condition, by means of which a measurement can be initiated or finished.

- User-specific instrument settings can be stored and re-loaded at any time as required. This means that repeat measurements can be carried out on a machine again and again using the same device settings.
- Measured values, curves or texts are visualized on a **full-graphics color display** in different selectable formats and display forms.
- Numerous useful and easy-to-use auxiliary functions are available, e.g. zoom, ruler tool, differential value graph creation and individual scaling, which are particularly for use when analyzing the recorded measurement curves.
- The communication between the HMG 4000 and a PC is performed via the built-in USB port.
- A HMG 4000 connected to your PC is recognized and depicted as a directory by the PC. You can conveniently move measured data to your PC. Optionally, data transfers can be carried out via a file manager by means of a USB memory stick.

TestMate[®] Series HMG 4000

The PC software HMGWIN is also supplied with the device. This software is a convenient and simple package for analyzing and archiving curves and logs which have been recorded using the HMG 4000, or for exporting the data for integration into other PC programs if required. In addition it is also possible to operate the HMG 4000 directly from the computer. Basic settings can be made, and measurements can be started online and displayed directly on the PC screen in real-time as measurement curves progress.			Software	HY-TRAX® RBSA CSM
HMGWIN can be run on PCs with Windows 7, Windows 8.1 as well as Windows 10 operating systems.				TEL
*) SMART sensors (Condition Monitoring Sensors) are a generation of sensors which can provide a variety of			IFH	
different measurement variables.				FCU
Some examples of the numerous (useful additional functions	:		MICS
Display of the measurements in graph for	m or as a table			SMU
Zoom function: Using the mouse, a fran section of a measurement curve, which is	ne is drawn around an interesting then enlarged and displayed	A CAN DAY		СТИ
Accurate measurement of the curves us amplitude values and differentials)	sing the ruler tool (time values,	INASARA		EPK Trouble
Individual comments and measurement i the graph	nformation can be added to			Check Plus
 Overlay of curves, for example to docum condition/current condition) 	ent the wear of a machine (new			HMG2500 HMG4000
 Using mathematical operations (calculation functions, filter functions), new curves can be added 		"SAC		ET-100-6
Snap-shot function: Comparable to the function immediately of any comparable to the function of the state of the stateo	unction of a digital camera, a graph and saved as a .jpg file			RFSA
A professional measurement report can be produced at the click of a		ht jh. ji = 12 m.		HFS-BC
of contents, all recorded data, description	mouse: HMGWIN has an automatic layout function. Starting with a table of contents, all recorded data, descriptions and graphics and/or tables are			HFS-15
combined into a professional report and saved as a .pdf file			MFD-BC	
 Online function (HMGWIN only): Starting, recording, and online display of measurements (similar to the function of an oscilloscope) 				
measurements (similar to the function of	an oscilloscope)			MFS, MFD
 measurements (similar to the function of Change of axis assignment of the recorde graph mode (e.g. to produce a p-Q graph 	an oscilloscope) ed measurement parameters in)			MFS, MFD HY-TRAX® Retrofit System
 measurements (similar to the function of Change of axis assignment of the recorde graph mode (e.g. to produce a p-Q graph 	an oscilloscope) ed measurement parameters in)		Technical	MFS, MFD HY-TRAX® Retrofit System MFD-MV
 measurements (similar to the function of Change of axis assignment of the recorde graph mode (e.g. to produce a p-Q graph Analog Inputs 	an oscilloscope) ed measurement parameters in) HSL analogue sensors		Technical Data	MFS, MFD HY-TRAX® Retrofit System MFD-MV MFS-HV
 measurements (similar to the function of Change of axis assignment of the recorder graph mode (e.g. to produce a p-Q graph Analog Inputs Input signals 8 channels M12x1 Ultra-Lock 	an oscilloscope) ed measurement parameters in) HSI analogue sensors HSI SMART sensors		Technical Data	MFS, MFD HY-TRAX® Retrofit System MFD-MV MFS-HV AMS, AMD
 measurements (similar to the function of Change of axis assignment of the recorder graph mode (e.g. to produce a p-Q graph Analog Inputs Input signals 8 channels M12x1 Ultra-Lock flange sockets (5 pole) 	An oscilloscope) ed measurement parameters in) HSI analogue sensors HSI SMART sensors Voltage signals: i.e. 0.5 4.5 V, 0	. 10 V etc. (input ranges for	Technical Data	MFS, MFD HY-TRAX® Retrofit System MFD-MV MFS-HV AMS, AMD FS
 measurements (similar to the function of Change of axis assignment of the recorder graph mode (e.g. to produce a p-Q graph Analog Inputs Input signals 8 channels M12x1 Ultra-Lock flange sockets (5 pole) channel A to channel H 	an oscilloscope) ed measurement parameters in) HSI analogue sensors HSI SMART sensors Voltage signals: i.e. 0.5 4.5 V, 0 . 0 50 V, 0 10 V, 0 4.5 V, -10 . Current signals, i.e. 4 20mA, 0	. 10 V etc. (input ranges for . 10 V) 20mA (input range 0 20 mA)	Technical Data	MFS, MFD HY-TRAX® Retrofit System MFD-MV MFS-HV AMS, AMD FS AMFS
 measurements (similar to the function of Change of axis assignment of the recorde graph mode (e.g. to produce a p-Q graph Analog Inputs Input signals 8 channels M12x1 Ultra-Lock flange sockets (5 pole) channel A to channel H 	an oscilloscope) ed measurement parameters in) HSI analogue sensors HSI SMART sensors Voltage signals: i.e. 0.5 4.5 V, 0 . 0 50 V, 0 10 V, 0 4.5 V, -10 . Current signals, i.e. 4 20mA, 0 1 x PT 100 / PT 1000 (on Channel	. 10 V etc. (input ranges for . 10 V) 20mA (input range 0 20 mA) H)	Technical Data	MFS, MFD HY-TRAX® Retrofit System MFD-MV MFS-HV AMS, AMD FS AMFS KLS, KLD
 measurements (similar to the function of Change of axis assignment of the recorder graph mode (e.g. to produce a p-Q graph Analog Inputs Input signals 8 channels M12x1 Ultra-Lock flange sockets (5 pole) channel A to channel H Accuracy dependence of the input range 	An oscilloscope) ed measurement parameters in HSI analogue sensors HSI SMART sensors Voltage signals: i.e. 0.5 4.5 V, 0 . 0 50 V, 0 10 V, 0 4.5 V, -10 . Current signals, i.e. 4 20mA, 0 1 x PT 100 / PT 1000 (on Channel < ± 0.1% FS at HSI, voltage, current < + 1 % FS at PT 100 / PT 1000	. 10 V etc. (input ranges for . 10 V) 20mA (input range 0 20 mA) H)	Technical Data	MFS, MFD HY-TRAX® Retrofit System MFD-MV MFS-HV AMS, AMD FS AMFS KLS, KLD MCO
 measurements (similar to the function of Change of axis assignment of the recorde graph mode (e.g. to produce a p-Q graph Analog Inputs Input signals 8 channels M12x1 Ultra-Lock flange sockets (5 pole) channel A to channel H Accuracy dependence of the input range Digital Inputs 	an oscilloscope) ed measurement parameters in HSI analogue sensors HSI SMART sensors Voltage signals: i.e. $0.5 4.5 V, 0 0 50 V, 0 10 V, 0 4.5 V, -10 0 50 V, 0 10 V, 0 4.5 V, -10 1 x PT 100 / PT 1000 (on Channel \leq \pm 0.1\% FS at HSI, voltage, current\leq \pm 1 \% FS at PT 100 / PT 1000$. 10 V etc. (input ranges for . 10 V) 20mA (input range 0 20 mA) H) nt	Technical Data	MFS, MFD HY-TRAX® Retrofit System MFD-MV MFS-HV AMS, AMD FS AMFS KLS, KLD MCO AKS, AKD
 measurements (similar to the function of Change of axis assignment of the recorder graph mode (e.g. to produce a p-Q graph Analog Inputs Input signals 8 channels M12x1 Ultra-Lock flange sockets (5 pole) channel A to channel H Accuracy dependence of the input range Digital Inputs Input signals 	an oscilloscope) ed measurement parameters in) HSI analogue sensors HSI SMART sensors Voltage signals: i.e. $0.5 4.5 V, 0.0.0 50 V, 0 10 V, 0 4.5 V, -100 50 V, 0 10 V, 0 4.5 V, -10Current signals, i.e. 4 20mA, 01 x PT 100 / PT 1000 (on Channel\leq \pm 0.1\% FS at HSI, voltage, curren\leq \pm 1.\% FS at PT 100 / PT 1000Digital status (high/low)$. 10 V etc. (input ranges for . 10 V) 20mA (input range 0 20 mA) H) nt	Technical Data	MFS, MFD HY-TRAX® Retrofit System MFD-MV MFS-HV AMS, AMD FS AMFS KLS, KLD MCO AKS, AKD LSN, LSA, LSW
 measurements (similar to the function of Change of axis assignment of the recorder graph mode (e.g. to produce a p-Q graph Analog Inputs Input signals 8 channels M12x1 Ultra-Lock flange sockets (5 pole) channel A to channel H Accuracy dependence of the input range Digital Inputs Input signals 2 channels via M12x1 Ultra-Lock flange socket (5 pole) 	an oscilloscope) ed measurement parameters in HSI analogue sensors HSI SMART sensors Voltage signals: i.e. $0.5 4.5 V, 0$ 0 50 V, 0 10 V, 0 4.5 V, -10 Current signals, i.e. $4 20mA, 0$ $1 \times PT 100 / PT 1000$ (on Channel $\leq \pm 0.1\%$ FS at HSI, voltage, current $\leq \pm 1 \%$ FS at PT 100 / PT 1000 Digital status (high/low) Frequency (0.01 to 30,000 Hz) PWM duty cycle	. 10 V etc. (input ranges for . 10 V) 20mA (input range 0 20 mA) H) nt	Technical Data	MFS, MFD HY-TRAX® Retrofit System MFD-MV MFS-HV AMS, AMD FS AMFS KLS, KLD MCO AKS, AKD LSN, LSA, LSW X Series
 measurements (similar to the function of Change of axis assignment of the recorder graph mode (e.g. to produce a p-Q graph Analog Inputs Input signals 8 channels M12x1 Ultra-Lock flange sockets (5 pole) channel A to channel H Accuracy dependence of the input range Digital Inputs Input signals 2 channels via M12x1 Ultra-Lock flange socket (5 pole) Channel I, J 	an oscilloscope) ed measurement parameters in) HSI analogue sensors HSI SMART sensors Voltage signals: i.e. $0.5 4.5 V, 0.0.0 50 V, 0 10 V, 0 4.5 V, -10Current signals, i.e. 4 20mA, 0 1 x PT 100 / PT 1000 (on Channel)\leq \pm 0.1\% FS at HSI, voltage, current\leq \pm 1.\% FS at PT 100 / PT 1000Digital status (high/low)Frequency (0.01 to 30,000 Hz)PWM duty cycleDurations (i.e. Period length)$. 10 V etc. (input ranges for . 10 V) 20mA (input range 0 20 mA) H) nt	Technical Data	MFS, MFD HY-TRAX® Retrofit System MFD-MV MFS-HV AMS, AMD FS AMFS KLS, KLD MCO AKS, AKD LSN, LSA, LSW X Series OLF Compact
 measurements (similar to the function of Change of axis assignment of the recorder graph mode (e.g. to produce a p-Q graph Analog Inputs Input signals 8 channels M12x1 Ultra-Lock flange sockets (5 pole) channel A to channel H Accuracy dependence of the input range Digital Inputs Input signals 2 channels via M12x1 Ultra-Lock flange socket (5 pole) Channel I, J Level 	an oscilloscope) ed measurement parameters in) HSI analogue sensors HSI SMART sensors Voltage signals: i.e. $0.5 4.5 V, 0.0.0 50 V, 0 10 V, 0 4.5 V, -10Current signals, i.e. 4 20mA, 0 1 x PT 100 / PT 1000 (on Channel\leq \pm 0.1\% FS at HSI, voltage, curren\leq \pm 1.\% FS at PT 100 / PT 1000Digital status (high/low)Frequency (0.01 to 30,000 Hz)PWM duty cycleDurations (i.e. Period length)Switching threshold / switch-backvoltage: 50 V$. 10 V etc. (input ranges for . 10 V) . 20mA (input range 0 20 mA) H) nt threshold: 2 V/1 V Max input	Technical Data	MFS, MFD HY-TRAX® Retrofit System MFD-MV MFS-HV AMS, AMD FS AMFS KLS, KLD MCO AKS, AKD LSN, LSA, LSW X Series OLF Compact OLF
 measurements (similar to the function of Change of axis assignment of the recorder graph mode (e.g. to produce a p-Q graph Analog Inputs Input signals 8 channels M12x1 Ultra-Lock flange sockets (5 pole) channel A to channel H Accuracy dependence of the input range Digital Inputs Input signals 2 channels via M12x1 Ultra-Lock flange socket (5 pole) Channel I, J Level Accuracy 	an oscilloscope) ed measurement parameters in) HSI analogue sensors HSI SMART sensors Voltage signals: i.e. $0.5 4.5 V, 0.0.0$ 0 50 V, 0 10 V, 0 4.5 V, -10 Current signals, i.e. $4 20mA, 0$ $1 \times PT 100 / PT 1000$ (on Channel $\leq \pm 0.1\%$ FS at HSI, voltage, current $\leq \pm 1.\%$ FS at PT 100 / PT 1000 Digital status (high/low) Frequency (0.01 to 30,000 Hz) PWM duty cycle Durations (i.e. Period length) Switching threshold / switch-back voltage: 50 V $\leq \pm 0.1\%$. 10 V etc. (input ranges for . 10 V) 20mA (input range 0 20 mA) H) nt threshold: 2 V/1 V Max input	Technical Data	MFS, MFD HY-TRAX® Retrofit System MFD-MV MFS-HV AMS, AMD FS AMS KLS, KLD MCO AKS, AKD LSN, LSA, LSW X Series OLF Compact OLF
 measurements (similar to the function of Change of axis assignment of the recorder graph mode (e.g. to produce a p-Q graph Analog Inputs Input signals 8 channels M12x1 Ultra-Lock flange sockets (5 pole) channel A to channel H Accuracy dependence of the input range Digital Inputs Input signals 2 channels via M12x1 Ultra-Lock flange socket (5 pole) Channel I, J Level Accuracy CAN 	an oscilloscope) ed measurement parameters in HSI analogue sensors HSI SMART sensors Voltage signals: i.e. $0.5 4.5 V, 0.0.0$ 050 V, 010 V, 0 4.5 V, -10.0 Current signals, i.e. $4 20mA, 01 x PT 100 / PT 1000 (on Channel \leq \pm 0.1\% FS at HSI, voltage, current\leq \pm 1.\% FS at PT 100 / PT 1000Digital status (high/low)Frequency (0.01 to 30,000 Hz)PWM duty cycleDurations (i.e. Period length)Switching threshold / switch-back voltage: 50 V\leq \pm 0.1\%$. 10 V etc. (input ranges for . 10 V) 20mA (input range 0 20 mA) H) nt threshold: 2 V/1 V Max input	Technical Data	MFS, MFD HY-TRAX® Retrofit System MFD-MV MFS-HV AMS, AMD FS AMFS KLS, KLD MCO AKS, AKD LSN, LSA, LSW X Series OLF Compact OLF OLF-P NxTM
 measurements (similar to the function of Change of axis assignment of the recorder graph mode (e.g. to produce a p-Q graph Analog Inputs Input signals 8 channels M12x1 Ultra-Lock flange sockets (5 pole) channel A to channel H Accuracy dependence of the input range Digital Inputs Input signals 2 channels via M12x1 Ultra-Lock flange socket (5 pole) Channel I, J Level Accuracy CAN Input signals 2 channels M22 4 Hit is in b.f. 	an oscilloscope) ed measurement parameters in) HSI analogue sensors HSI SMART sensors Voltage signals: i.e. $0.5 4.5 V$, $0.0.0 50 V$, $0 10 V$, $0 4.5 V$, $-10 Current signals, i.e. 4 20mA, 0 1 \times PT 100 / PT 1000 (on Channel\leq \pm 0.1\% FS at HSI, voltage, current \leq \pm 1.\% FS at PT 100 / PT 1000Digital status (high/low)Frequency (0.01 to 30,000 Hz)PWM duty cycleDurations (i.e. Period length)Switching threshold / switch-back voltage: 50 V\leq \pm 0.1\%HCSI sensors, CAN, J1939, CANop$	10 V etc. (input ranges for 10 V) 20mA (input range 0 20 mA) H) nt threshold: 2 V/1 V Max input en PDO, CANopen SDO	Technical Data	MFS, MFD HY-TRAX® Retrofit System MFD-MV MFS-HV AMS, AMD FS AMS KLS, KLD MCO AKS, AKD LSN, LSA, LSW X Series OLF Compact OLF OLF-P NxTM VEU
 measurements (similar to the function of Change of axis assignment of the recorder graph mode (e.g. to produce a p-Q graph Analog Inputs Input signals 8 channels M12x1 Ultra-Lock flange sockets (5 pole) channel A to channel H Accuracy dependence of the input range Digital Inputs Input signals 2 channels via M12x1 Ultra-Lock flange socket (5 pole) Channel I, J Level Accuracy CAN Input signals 28 channels M12x1 Ultra-Lock flange socket (5 pole) channel K1 to K28 	an oscilloscope) ed measurement parameters in) HSI analogue sensors HSI SMART sensors Voltage signals: i.e. $0.5 4.5 V, 0.0.0 50 V, 0 10 V, 0 4.5 V, -10.0.0 Current signals, i.e. 4 20mA, 0 1 \times PT 100 / PT 1000 (on Channel)\leq \pm 0.1\% FS at HSI, voltage, current \leq \pm 1.\% FS at HSI, voltage, current \leq \pm 1.\% FS at PT 100 / PT 1000Digital status (high/low)Frequency (0.01 to 30,000 Hz)PWM duty cycleDurations (i.e. Period length)Switching threshold / switch-back voltage: 50 V\leq \pm 0.1\%HCSI sensors, CAN, J1939, CANop$. 10 V etc. (input ranges for . 10 V) 20mA (input range 0 20 mA) H) nt threshold: 2 V/1 V Max input en PDO, CANopen SDO	Technical Data	MFS, MFD HY-TRAX® Retrofit System MFD-MV MFS-HV AMS, AMD FS AMFS KLS, KLD MCO AKS, KLD LSN, LSA, LSW X Series OLF Compact OLF OLF-P NxTM VEU IXU
 measurements (similar to the function of Change of axis assignment of the recorder graph mode (e.g. to produce a p-Q graph Analog Inputs Input signals 8 channels M12x1 Ultra-Lock flange sockets (5 pole) channel A to channel H Accuracy dependence of the input range Digital Inputs Input signals 2 channels via M12x1 Ultra-Lock flange socket (5 pole) Channel I, J Level Accuracy CAN Input signals 28 channels M12x1 Ultra-Lock flange socket (5 pole) Channel K1 to K28 Baud rate 	an oscilloscope) ed measurement parameters in) HSI analogue sensors HSI SMART sensors Voltage signals: i.e. $0.5 4.5 V$, $0.0.0 50 V$, $0 10 V$, $0 4.5 V$, $-10 Current signals, i.e. 4 20mA, 0 1 x PT 100 / PT 1000 (on Channel\leq \pm 0.1\% FS at HSI, voltage, current\leq \pm 1.\% FS at PT 100 / PT 1000Digital status (high/low)Frequency (0.01 to 30,000 Hz)PWM duty cycleDurations (i.e. Period length)Switching threshold / switch-backvoltage: 50 V\leq \pm 0.1\%HCSI sensors, CAN, J1939, CANop10 kbit/s to 1 Mbit/s$. 10 V etc. (input ranges for . 10 V) 20mA (input range 0 20 mA) H) nt threshold: 2 V/1 V Max input en PDO, CANopen SDO	Technical Data	MFS, MFD HY-TRAX® Retrofit System MFD-MV MFS-HV AMS, AMD FS AMS KLS, KLD MCO AKS, AKD LSN, LSA, LSW X Series OLF Compact OLF OLF-P NxTM VEU IXU
 measurements (similar to the function of Change of axis assignment of the recorder graph mode (e.g. to produce a p-Q graph Analog Inputs Input signals 8 channels M12x1 Ultra-Lock flange sockets (5 pole) channel A to channel H Accuracy dependence of the input range Digital Inputs Input signals 2 channels via M12x1 Ultra-Lock flange socket (5 pole) Channel I, J Level Accuracy CAN Input signals 28 channels M12x1 Ultra-Lock flange socket (5 pole) channel K1 to K28 Baud rate Accuracy 	an oscilloscope) ed measurement parameters in HSI analogue sensors HSI SMART sensors Voltage signals: i.e. $0.5 4.5 V$, $0 0 50 V$, $0 10 V$, $0 4.5 V$, $-10 0 50 V$, $0 10 V$, $0 4.5 V$, $-10 0 50 V$, $0 10 V$, $0 4.5 V$, $-10 0 50 V$, $0 10 V$, $0 4.5 V$, $-10 0 50 V$, $0 10 V$, $0 4.5 V$, $-10 0 50 V$, $0 10 V$, $0 4.5 V$, $-10 0 50 V$, $0 10 V$, $0 4.5 V$, $0 0 50 V$, $0 10 V$, $0 4.5 V$, $0 0 50 V$, $0 10 V$, $0 4.5 V$, $-10 0 50 V$, $0 10 V$, $0 4.5 V$, $-10 0 50 V$, $0 10 V$, $0 4.5 V$, $0 0 50 V$, $0 10 V$, $0 4.5 V$, $0 0 4.5 V$, $0 4.5 V$, $0 0 50 V$, $0 4.5 V$, $0 4.5 V$, $0 0 4.5 V$, $0 4.5 V$, $0 0 4.5 V$, $0 0 4.5 V$, $0 4.5 V$, $0 0 4.5 V$, $0 1 \times PT 100 / PT 1000$ (on Channel $\leq \pm 0.1 \%$ HCSI sensors, CAN, J1939, CANop 10 kbit/s to 1 Mbit/s $\leq \pm 0.1 \%$. 10 V etc. (input ranges for . 10 V) 20mA (input range 0 20 mA) H) nt threshold: 2 V/1 V Max input en PDO, CANopen SDO	Technical Data	MFS, MFD HY-TRAX® Retrofit System MFD-MV MFS-HV AMS, AMD FS AMS KLS, KLD MCO AKS, AKD LSN, LSA, LSW X Series OLF Compact OLF OLF-P NxTM VEU IXU Triton-A Triton-E
 measurements (similar to the function of Change of axis assignment of the recorder graph mode (e.g. to produce a p-Q graph Analog Inputs Input signals 8 channels M12x1 Ultra-Lock flange sockets (5 pole) channel A to channel H Accuracy dependence of the input range Digital Inputs Input signals 2 channels via M12x1 Ultra-Lock flange socket (5 pole) Channel I, J Level Accuracy CAN Input signals 28 channels M12x1 Ultra-Lock flange socket (5 pole) channel K1 to K28 Baud rate Accuracy Calculated channels 	an oscilloscope) ed measurement parameters in HSI analogue sensors HSI SMART sensors Voltage signals: i.e. $0.5 4.5 V$, $0 0 50 V$, $0 10 V$, $0 4.5 V$, $-10 0 50 V$, $0 10 V$, $0 4.5 V$, $-10 0 50 V$, $0 10 V$, $0 4.5 V$, $-10 1 x PT 100 / PT 1000 (on Channel \leq \pm 0.1\% FS at HSI, voltage, current signals, i.e. 4 20mA, 0 1 x PT 100 / PT 1000 (on Channel) \leq \pm 0.1\% FS at PT 100 / PT 1000Digital status (high/low)Frequency (0.01 to 30,000 Hz)PWM duty cycleDurations (i.e. Period length)Switching threshold / switch-back voltage: 50 V\leq \pm 0.1 \%HCSI sensors, CAN, J1939, CANop10 kbit/s to 1 Mbit/s\leq \pm 0.1 \%$. 10 V etc. (input ranges for . 10 V) 20mA (input range 0 20 mA) H) nt threshold: 2 V/1 V Max input en PDO, CANopen SDO	Technical Data	MFS, MFD HY-TRAX® Retrofit System MFD-MV MFS-HV AMS, AMD FS AMS, AMD KLS, KLD MCO AKS, KLD USN, LSA, LSW X Series OLF Compact OLF OLF-P NxTM VEU IXU Triton-A Triton-E NAV
 measurements (similar to the function of Change of axis assignment of the recorder graph mode (e.g. to produce a p-Q graph Analog Inputs Input signals 8 channels M12x1 Ultra-Lock flange sockets (5 pole) channel A to channel H Accuracy dependence of the input range Digital Inputs Input signals 2 channels via M12x1 Ultra-Lock flange socket (5 pole) Channel I, J Level Accuracy CAN Input signals 28 channels M12x1 Ultra-Lock flange socket (5 pole) channel K1 to K28 Baud rate Accuracy Calculated channels Quantity 	an oscilloscope) ed measurement parameters in HSI analogue sensors HSI SMART sensors Voltage signals: i.e. $0.5 4.5 V$, 0.0 0 50 V, $0 10 V$, $0 4.5 V$, -10 . Current signals, i.e. $4 20$ mA, 0 $1 \times PT 100 / PT 1000$ (on Channel $\leq \pm 0.1\%$ FS at HSI, voltage, current $\leq \pm 1.\%$ FS at PT 100 / PT 1000 Digital status (high/low) Frequency (0.01 to 30,000 Hz) PWM duty cycle Durations (i.e. Period length) Switching threshold / switch-back voltage: 50 V $\leq \pm 0.1\%$ HCSI sensors, CAN, J1939, CANop 10 kbit/s to 1 Mbit/s $\leq \pm 0.1\%$ 4 channels via virtual port L (channels via virtual port L virtual port L virtua	. 10 V etc. (input ranges for . 10 V) 20mA (input range 0 20 mA) H) nt threshold: 2 V/1 V Max input en PDO, CANopen SDO	Technical Data	MFS, MFD HY-TRAX® Retrofit System MFD-MV MFS-HV AMS, AMD FS AMS KLS, KLD MCO AKS, AKD LSN, LSA, LSW X Series OLF Compact OLF OLF-P NxTM VEU IXU Triton-A Triton-E NAV

HMG 4000

TestMate® Series

Technical Data

Programming interface		
For O-Link devices	1 channel via M12x1 Ultra-Lock flange socket (5 pole)	
Voltage supply		
Network operation	9 to 36 V DC via standard round plug 2.1 mm	
Battery	Lithium-Nickel-Kobalt-Aluminum-Oxide 3.6 V; 9300 mAh	
Battery charging time	approx. 5 hours	
Service Life	without sensors: approx. 11 hours with 2 sensors: approx. 9 hours with 4 sensors: approx. 7 hours with 8 sensors: approx. 4 hours	
Display		
Туре	TFT-LCD Touchscreen	
Quantity	5.7"	
Resolution	VGA 640 x 480 Pixel	
Backlight	10 to 100% adjustable	
Interfaces		
USB Host		
Plug-in connection	USB socket, Type A, screened	
USB Standard	2.0 (USB Full speed)	
Transmission rate	12 Mbit/s	
Voltage supply	5 V DC	
Power supply	100 mA max.	
Protection	short circuit protection to GND (0 V)	
USB Slave		
Plug-in connection	USB socket, Type B, screened	
USB Standard	2.0 (USB High speed)	
Transmission rate	480 Mbit/s	
Voltage supply	5 V DC	
Power supply	100 mA max.	
Protection	short circuit protection to GND (0 V)	
Memory		
Measured value memory	16 GB for min. 500 measurements, each containing 8 Million measured values	
Technical Standards		
EMC	IEC 61000-4-2 / -3 / -4 / -5 / -6 / -8	
Safety	EN 61010	
IP class	IP 40	
Ambient conditions		
Operating temperature	32°F to 122°F (0°C to 50°C)	
Storage temperature	-4°F to 140°F (-20°C to 60°C)	
Relative humidity	70%, non-condensing max	
Dimensions	approx. 11.22 x 7.44 x 3.43 in (B x H x T)	
Weight	approx. 4.08 lb (1.85 kg)	
Housing material	Plastic (Elastollan [®] R 3000 - TPU-GF)	

Order Details

Additional accessories, such as electrical and mechanical connection adapters, power adapters, etc. can be found in the "Accessories for HMG Series" catalog pages. Model Code Description: HMG 4000 - 000 - US P/N 925283

Scope of delivery

- HMG 4000
- Power supply for 90 to 230 V AC

Strap

86 SCHROEDER INDUSTRIES

Operating manual and documentation US = English

- Operating Instructions
- Data storage medium containing USB drivers HMGWIN and CMWIN software
- USB connector cable

Accessories for HMG Series

Pressure, temperature and flow rate transmitters with HSI sensor detection as well as CAN pressure transmitters with HCSI sensor detection, see below and next page:

Pressure Transducer with HSI

(Sensor Interface)		
Model Code	Description	Part No.
HDA 4748-H-0016-000	-14.5 to 130.5 psi (-1 to 9 bar)	909429
HDA 4748-H-0016	0 to 230 psi (0 to 16 bar)	909425
HDA 4748-H-0060-000	0 to 870 psi (0 to 60 bar)	909554
HDA 4748-H-0100-000	0 to 1450 psi (0 to 100 bar)	909426
HDA 4748-H-0250-000	0 to 3625 psi (0 to 250 bar)	909337
HDA 4748-H-0400-000	0 to 5800 psi (0 to 400 bar)	909427
HDA 4748-H-0600-000	0 to 8700 psi (0 to 600 bar)	909428
HDA 4778-H-0135-000	-14.5 to 135.5 psi (-1 to 9.34 bar)	920755
HDA 4778-H-0150-000	0 to 150 psi (0 to 10 bar)	920663
HDA 4778-H-1500-000	0 to 1500 psi (0 to 103 bar)	920757
HDA 4778-H-3000-000	0 to 3000 psi (0 to 207 bar)	920756
HDA 4778-H-6000-000	0 to 6000 psi (0 to 144 bar)	920664
HDA 4778-H-9000-000	0 to 9000 psi (0 to 621 bar)	920665

HCSI Pressure Measuring Transducer (HMG 4000 only CANbus)

Model Code	Description	Part No.
HDA 4748-HC-0009-000 (-1+9 bar)	-1 9 bar	925287
HDA 4748-HC-0016-000	0 16 bar	925298
HDA 4748-HC-0060-000	0 60 bar	925305
HDA 4748-HC-0100-000	0 100 bar	925299
HDA 4748-HC-0160-000	0 160 bar	925286
HDA 4748-HC-0250-000	0 250 bar	925304
HDA 4748-HC-0400-000	0 400 bar	925303
HDA 4748-HC-0600-000	0 600 bar	925301
HDA 4748-HC-1000-000	01000 bar	925300

HCSI Temperature Measuring Transducer (HMG 4000 only CANbus)

Model Code	Description	Part No.
ETS 4148-HC-006-000	-13 to +212 °F	925302

Speed Sensors

Model Code	Description	Part No.
HDS 1000-002	Rpm Sensor (plug M12x1) 2M; Includes HDA 1000 Reflector Set (part no. 904812)	909436
HDS 1000 Reflector Set	Reflective foil set 25 pieces	904812
SSH 1000 (HMG 2500 only)	Sensor simulator for 2 HSI (ideal for training purposes)	909414
HSS 210-3-050-000 (HMG 4000 only)	Rpm Sensor (in connection with ZBE 46)	923193
HSS 220-3-046-000 (HMG 4000 only)	Rpm Sensor (in connection with ZBE 46)	923195

Temperature Transducer with HSI (Sonsor Interface)

(Sensor Interface)		
Model Code	Description	Part No.
ETS-4148-H-006-000	-13° to 212°F (-25° to 100°C)	923398

	CS 1939
	CSI-C-11
Available	HY-TRAX®
Accessories	RBSA
	CSM
	TFL
	TFH
	FCU
	MCS
	AS
	SMU
	СТИ
	ЕРК
	Trouble
	Check Plus
	HMG2500
	HMG4000
	ET-100-6
	НТВ
	RFSA
	HFS-BC
	HFS-15
	MFD-BC
	MFS, MFD
	HY-TRAX® Retrofit System
	MFD-MV
	MFS-HV
	AMS, AMD
	FS
	AMFS
	KLS, KLD

NOTES:

The information in

this catalog relates to the operating

operating conditions

Subject to technical modifications

conditions and applications described. For applications or

not described, please contact us a filtersystemsmanger@ schroederindustries.

com.

Triton-A

AKS, AKD LSN, LSA, LSW X Series

Sensor Cables (HMG 4000 only)

Model Code	Description Part No.				
Push-pull connectio	n on plug-side				
ZBE 40-02	(CABLE M12X1/5P, PUSH-PULL) 2M length	6177158			
ZBE 40-05	(CABLE M12X1/5P, PUSH-PULL) 5M length	6177159			
ZBE 40-10	(CABLE M12X1/5P, PUSH-PULL) 10M length 6177160				
Screw connection					
ZBE 30-02	(Sensor cable M12x1, 5-pin) 2M length	6040851			
ZBE 30-05	(Sensor cable M12x1, 5-pin) 5M length 6040852				

Flow Sensor with HSI

(Sensor Interface)

Model Code	Description Part No.			
Aluminum				
EVS 3108-H-0020-000	0.26 to 5.28 gpm (1.2 to 20 L/min)	909405		
EVS 3108-H-0060-000	1.59 to 15.9 gpm (6 to 60 L/min)	909293		
EVS 3108-H-0300-000	3.96 to 79.3 gpm (15 to 300 L/min)	909404		
EVS 3108-H-0600-000	10.6 to 159 gpm (40 to 600 L/min)	909403		
Stainless Steel				
EVS 3118-H-0020-000	0.26 to 5.28 gpm (1.2 to 20 L/min)	909409		
EVS 3118-H-0060-000	1.59 to 15.9 gpm (6 to 60 L/min)	909406		
EVS 3118-H-0300-000	3.96 to 79.3 gpm (15 to 300 L/min)	909408		
EVS 3118-H-0600-000	10.6 to 159 gpm (40 to 600 L/min)	909407		

Other Accessories

Model Code	Description	Part No.
Pelican Case	for HMG 2500 and accessories	2702730
Case for HMG 4000	Case for HMG 4000 and accessories	6179836
USB Cable (HMG 2500 only)	Connection to PC	6040585
ZBE 30-02 (HMG 2500 only)	cable for M12x1 - 6'	6040851
ZBE 30-05 (HMG 2500 only)	cable for M12x1 - 15'	6040851
ZBE 36 (HMG 2500 only)	TWS (TestMate [®] Water Sensor) Adapter	909737
Power Supply	DC Charging unit for HMG 2500	6054296
ZBE 31	Car charger for HMG Unit	909739
HCSI Y splitter	Y splitter for HCSI sensors	6178196
HCSI bus termination	Termination connector for HCSI Sensors	6178198
ZBE 46	Pin adapter HMG (for three-wire signals, AS,)	925725
ZBE 100	Adapter for TFP 100	925726
ZBE 38	Y adapter, black for jack I/J	3224436
ZBE 26	Y adapter, blue for HLB 1000	3304374
ZBE 41	Y adapter, yellow for TCM sensor	910000
UVM 3000	Universal connection module for HMG 4000 only	909752
Hydraulic Adapter set	Adapter hose DN 2 / 1620/1620, 400 mm and 1000 mm, pressure gauge connection 1620/ G1/4, adapter 1615/ 1620, bulkhead couplings 1620/ 1620	903083

TestMate[®] Series ET-100-6

Features and Benefits

- Easy to use–for beginner or experienced troubleshooters
- Large meters are clearly marked with easy-to-read scales
- Scale selector switches and the load valve control knob are also large and specially designed to be easy to grip under any conditions
- All loose components are stowed in form-fitting recesses in the impact resistant plastic case that also protects the meters and circuitry
- The electronic sensor and the EasyTest fitting are the only components that see hydraulic fluid, so clean-up is limited to draining the sensor and replacing the cap on the EasyTest fitting
- The load valve allows the operator to simulate operating pressure, if required

Schroeder's original TestMate® system with the patented EasyTest fitting provides the hydraulic user with a quick, convenient method to test, troubleshoot, and obtain preventive maintenance data on hydraulic systems. Flows up to 100 gpm and pressures up to 6000 psi, as well as operating temperature, are measured through an EasyTest fitting, which is permanently installed in the hydraulic system.

The sensor and EasyTest fittings are robust units designed to operate safely at any system pressure up to the maximum 6000 psi that the sensor load valve is capable of generating. Pressure bearing parts are thick section aluminum extrusions carefully chosen for their combination of high strength and light weight.

If the system's prime mover is kept at constant rpm, any drop in indicated flow will represent a loss of system efficiency at the point of test. During testing, system operation can be used to create the load, or the load can be simulated with the load valve in the sensor block.

The electronic circuitry produces data that accurately reflects system performance at each test point throughout the operating pressure range, making it possible to also determine pump and motor efficiency as well as valve and cylinder leakage.

- Check systems before and after rebuild
- Use as part of a preventive maintenance program
- Use to troubleshoot in instances of poor system performance or excessive machine downtime
- Use to check performance on a production line
- Install EasyTest fittings on prototypes to accurately evaluate hydraulic performance at any stage of development

Pressure meter has low and high scale, and battery check.	Papensis, Crista Team Team 1. Analysis and a first 1. Analysis and a	Tatan Managar	1	— Load valve can generate 6000 psi.
Flow meter includes low and high scale, and temperature scale.	FLOW gen	PRESSURE	*	9' cable connects sensor to TestMate [®] .
Auxiliary pressure output allows attachment to oscilloscope.	- 	760		Captive sensor bolts cannot get lost.
Three-position selector switches are easy to operate.			 J •	

Description

ET-100-6

	HFS-15
	MFD-BC
	MFS, MFD
	HY-TRAX® Retrofit System
	MFD-MV
	MFS-HV
	AMS, AMD
	FS
	AMFS
Applications	KLS, KLD
	МСО
	AKS, AKD
	LSN, LSA, LSW
	X Series
	OLF Compact
	OLF
	OLF-P
	NxTM
	VEU
NOTES:	IXU
Box 2. Required for	Triton-A
underground	Triton-E
application.	NAV
furnished with	SVD01
MSHA tag.	SVD
	OXS

B

SCHROEDER INDUSTRIES 89

ET-100-6 TestMate[®] Series

	-		
Flow Weter	Type:	Electronic turbine	
	Low Scale Range:	0 to 20 gpm (0 to 75.7 L/min)	
	Low Scale Accuracy:	±1 gpm @ 3 to 5 gpm (11-19 L/min) ±0.2 gpm @ 6 to 20 gpm (22.7-75.7 L/min)	
	High Scale Range:	0 to 100 gpm (0 to 378 L/min)	
	High Scale Accuracy:	±2% of full scale	
	Minimum Reading:	3 gpm (11.35 L/min)	
Pressure Meter	Туре:	Electronic transducer	
	Low Scale Range:	0 to 1000 psi (0 to 69 bar)	
	Low Scale Accuracy:	±35 psi (2.41 bar)	
	High Scale Range:	0 to 6000 psi (0 to 413.8 bar)	
	High Scale Accuracy:	±120 psi (8.44 bar)	
Auxiliary Pressure Output:	BNC connector - 2.5 mV linear in the range 0 to independent of meter so	/ @ 0.1mA per 1000 psi (68.96 bar), 6000 psi (0 to 413.8 bar), cale selection	
Temperature Scale:	50°F to 250°F (10°C to	121°C)	
Power Source:	8 "C" size batteries To be furnished by custo	omer	
Weight:	18 lbs (8 kg)		
Case Dimensions:	ons: 19.87 x 13.93 x 4.68 in (50.4 x 35.4 x 11.9 cm)		
EasyTest Fitting Envelope Dimensions:	4.5 x 4 x 3 in (114 x 102	2 x 76 mm)	
EasyTest Fitting Mounting Holes:	Qty 2375 to 16 UNC	.75 dp.	
Clearance to Install Sensor:	11 in (280 mm) min		

EasyTest Fittings

Model Numbers

Model Numbers			_	Model N	umbers
Port Type and Size	Station with Through Flow for In-Line Testing	Station with Blocked Flow for "T" Testing	Port Type and Size	Station with Through Flow for In-Line Testing	Station with Blocked Flow for "T" Testing
NPTF			SAE 4-Bolt Boss ²		
0.75	A-ET-211	A-ET-197	0.75	A-ET-219	A-ET-205
1.00	A-ET-212	A-ET-198	1.00	A-ET-220	A-ET-206
1.25	A-ET-213	A-ET-199			
1.501	A-ET-256	A-ET-312			
SAE O-Ring			BSP PL		
1.06-12	A-ET-215	A-ET-201	0.75	A-ET-222	A-ET-314
1.3125-12	A-ET-216	A-ET-202	1.00	A-ET-223	A-ET-315
1.625-12	A-ET-217	A-ET-203	1.25	A-ET-224	A-ET-316
1.875-12 ¹	A-ET-258	A-ET-313			

¹For 3000 psi only

²Depth of holes not per SAE specifications

How to Build a Valid Model Number for a Schroeder Original TestMate®: Model BOX 1 BOX 2 Number ET-100-6 -Selection **Example:** *NOTE:* One option per box BOX 1 BOX 2 ET-100-6 = ET-100-6 BOX 1 BOX 2 Model Option Omit = None ET-100-6 Original TestMate® C = MSHA approved

Hydraulic Test Bench HTB

Description

Accessories

Features and Benefits

- An ingenious universal mounting bracket makes mounting pumps and motors on the bench a simple, quick operation
- Mounting plates are furnished to accommodate flange-mounted and foot-mounted pumps or motors
- Drive adapter equipment includes inserts for keyed shafts, an insert chuck and a universal drive shaft
- Quick disconnect porting on the bench provides convenient hook-up for test components
- Two complete operating manuals are supplied with each bench
- Kits and spare parts available for upgrades and maintenance

The Schroeder Model HTB hydraulic test bench is the ultimate diagnostic tool, capable of thoroughly testing a vast array of new or rebuilt components and subassemblies prior to their installation in a working system. Test bench instrumentation has been designed to make diagnosis fast and accurate, with virtually no requirement for connecting external instruments. The bench panel includes a digital flow gauge, a tachometer to measure the speed of tested pumps or motors, and a reservoir temperature gauge. Individual gauges measure pressure on the test bench main pump, the pump or motor being tested, the test bench load pump, the cylinder and valve pressure port, and the test bench super charge pump.

Every HTB includes efficient Schroeder hydraulic filters to keep the bench oil at optimum cleanliness, providing assurance that newly rebuilt components will not be subjected to harmful levels of dirt. To keep filters operating at peak efficiency, the instrument panel includes a red pilot light that signals the operator when any bench filter needs a new element.

These benches have been refined for over 50 years by Schroeder engineers, based on the comments and requests of over 1,000 test bench owners. The versatile hydraulic circuitry present in each of the three models can shorten troubleshooting time and take the guesswork out of diagnoses. Current models are powerful, compact units that pay for themselves quickly in saved maintenance time and expenses.

- Suction and pressure hose and fittings group (contains hose connection with female quick disconnects on both ends, plus a series of separate national pipe thread, straight thread, and SAE four-bolt flange adapters, ranging in size from 3/8" through 2", equipped with male quick disconnects)
- Oil cooler
- Solenoid and pilot-operated valve test group
- Spline shaft adapter kit
- Jib Crane Group
- Digital Instrumentation Package
- Water Cooled Heat Exchanger

- Filtration Group
- Safety Enclosure Group
- High Pressure Intensifier Circuit
- Bidirectional Pump Test Circuit
- HMG Digital Electronic Group
- Air Cooled Heat Exchanger
- 25 gpm Case Drain Meter
- TCM Kit

KDSA
CSM
TFL
TFH
FCU
MCS
AS
SMU
СТИ
ЕРК
Trouble
Check Plus
HMG2500
HMG4000
ET-100-6
НТВ
RFSA
HFS-BC
HFS-15
MEC MED
IVIES, IVIED
Retrofit System
MFD-MV
MFS-HV
AMS, AMD
FS
AMFS
KLS, KLD
МСО
AKS, AKD
LSN, LSA, LSW
X Series
OLF Compact
OLF
OLF-P
NxTM
VEU

Hydraulic Test Bench HTB

Applications

Pumps and motors can be tested dynamically. Pump and motor testing is aided by the wide speed and torque ranges built into the bench and by the universal mounting bracket and mounting accessories that come with the bench. An open loop hydrostatic variable volume hydraulic system provides the power and speed control for the drive shaft. Motors can be dynamically tested, under load, for operating efficiency. Pumps can be tested for external leakage and volumetric efficiency in either direction, at speeds from 200 to 2400 rpm. The test bench can also be used to break-in pumps and motors to manufacturer's specifications before they are installed in a system.

Cylinder leaks are easy to find. Double-acting cylinders may be cycled, and tested for both internal and external leakage at any point of piston travel. Scored cylinder walls and defective packing are easily detected. Single-acting cylinders are tested at maximum stroke.

Valve testing time is minimized. Pressures can be set, external and internal leakage spotted, flow and pressure data can be generated and checked against operating requirements and overall valve efficiency determined. Optional electrical and pilot pressure supplies are available on the bench for testing solenoid-actuated and pilot-operated valves.

Specifications

	Model HTB-50	Model HTB-100	Model HTB-150
Speed Range in either direction	200 to 2400 rpm	200 to 2400 rpm	200 to 2400 rpm
Power Available For testing pumps Expressed torque	275 ft-lbs to 1200 rpm	458 ft-lbs to 1200 rpm (decreasing proportionately to 2400 rpm)	670 ft-lbs to 1200 rpm
Expressed in horsepower	60 hp at 1200 rpm	115 hp at 1200 rpm (with constant hp to 2400 rpm)	150 hp at 1200 rpm
Test Pressure	0 to 5000 psi (345 bar)	0 to 5000 psi (345 bar)	0 to 5000 psi (345 bar)
Test Motor Load Maximum in either direction	275 ft-lbs	458 ft-lbs	670 ft-lbs
Electrical Drive Motor-230/460V, 1800 rpm; 3 phase, 60 hertz. A start-stop push button is mounted on the bench: Starter(s) islare not included. Customer must advise type of starter(s) and service voltage to be used.	50 hp	100 hp	100 hp and 50 hp
Hydraulics Main Bench Pump (variable piston)	23 gpm/5000 psi (87 L/min/345 bar)	38 gpm/5000 psi (144 L/min/345 bar)	38 gpm/5000 psi (144 L/min/345 bar)
Auxiliary Main Pump (variable piston)	N/A	N/A	23 gpm/5000 psi (87 L/min/345 bar)
Supplemental Pump	20 gpm/2000 psi (76 L/min/138 bar)	20 gpm/2000 psi (76 L/min/138 bar)	20 gpm/2000 psi (76 L/min/138 bar)
Pressure and Return Ports	1" quick disconnects	1" quick disconnects	1" quick disconnects
Suction Porting Flow Gauge Scales	1" & 2" quick disconnects Digital Readout from 0 to	1" & 2" quick disconnects 100 gpm (all models)	1" & 2" quick disconnects
Reservoir Capacity	100 gallons (378 L)	100 gallons (378 L)	200 gallons (757 L)
General	Full flow 3 micron filtratio includes a 30" x 30" worl digital tachometer.	n maintains excellent system cleanli < pan, oil level gauge, fill cap mesh :	ness level; bench strainer,
Bench Dimensions and Weight	62 ^{°°} H x 76″ L x 43″ W 4100 lbs (1860 kg)	62" H x 76" L x 43" W 4500 lbs (2041 kg)	62" H x 76" L x 55" W 6000 lbs (2722 kg) Auxiliary Power Unit30" H x 50" L x 30" W 900 lbs (408 kg)

Hydraulic Test Bench HTB

BOX 1	BOX 2	BOX 3 ROX 4]	IVIODEI	
HTB -	-				Number	F
kample: NOTE:	One option p	er box			Selection	
BOX 1	BOX 2	BOX 3 BOX 4	BOX 5			
HTB –	100 -	A – AD	= HTB100AADGXXXX			
5014	20110	DOX 3				
BOX 1 Model	BOX 2	Voltage	Options	Custom Groups		
HTR	50	A = 230V 60Hz	A = Water Cooled Heat Exchanger	Add G # for		
IIID	100	B = 460V 60Hz	B = Solenoid & Pilot Operated Valve Group	all custom		
	150	C = 575V 60Hz	C = Jib Crane Group	modifications.		
		D = 380V 50H	D = Filtration Group (standard/included on all benches)			Tro
		E = 415V 50Hz	E = Safety Enclosure Group			Check
		F = 380V 60Hz	G = Bidirectional Pump Test Circuit			HMG
		G = 208V 60Hz	H = HMG Digital Electronic Group			HMG
		H = 220V 50Hz	I = Air Cooled Heat Exchanger			ET-
			J = 25 gpm Case Drain Meter			
			K = Digital Gauges			
			L = TCM Kit			н
			Splined Shaft Group*			н
			Hose & Fitting Group*			MF
			* Not part of BOM structure, listed as			MFS,
			separate line item on r.o.			HY-TI Retrofit Sy
						MFI
						MF
						AMS,
						KLS
						AKS
						LSN, LSA
						X
						OLF Cor
						(
						1
						Tri
						Tri
					NOTES:	
					Box 4 May have	S
					multiple	

• This page is intentionally left blank

RFSA Reservoir Filtration System Adapter

Reservoir Filtration System Adapter		 Features and Benefits The RFSA is an aluminum adapter that gives a kidney loop filter access to a reservoir Accommodates kidney loop filtration rates up to approximately 15 gpm Suitable to use with many Filter Systems products including: KLS/KLD/MFS/MFD, HFS-BC, MFD-BC, MFD-MV, MFS/MFD-HV, TDS-A, AMFS, FS, MTS 1.25" SAE O-Ring Boss Suction Port 1.00" SAE O-Ring Boss Return Port Suction and Return downtubes included and recommended to be cut to length and bent for proper fluid turnover in a reservoir Optional MFS/MFD Fitting Kit can be ordered separately. This includes adapters to install CAM-GROOVE hose couplings between Suction/ Return hoses/wands and additional CAM-GROOVE adapters for installation in kidney loop adapter. Dust caps and plugs included All applications with a hydraulic reservoir utilizing a 6-bolt mounting connection
Mounting Requirement	Customer is responsible to cut an a ports: one for Suction and one for Reservoir pattern is six (6) .18" hol see Drawing S-1048.	<text></text>
Specifications	Reservoir Mounting Pattern:	Fits standard 6-bolt
	Supply Port Thread Size:	1.25" SAE O-Ring Boss Suction Port
	Return Port Thread Size:	1.00" SAE O-Ring Boss Return Port
	Breather Port Thread Size:	3⁄4″ NPT
	Return Tubes:	Suction and Return downtubes included and recommended to be cut to length and bent for proper fluid turnover in reservoir

Reservoir Filtration System Adapter

|--|

	CS 1939
	Parts List CSI-C-11
	Drawing HY-TRAX®
	RBSA
	CSM
	FCU
	MCS
o all 62 00 o actris Acti actris Acti	AS
	SMU
	сти
	ЕРК
	Trouble Check Plus
	HMG2500
	HMG4000
	ET-100-6
	НТВ
	RFSA
PULSAR PART PARTADON 1 / PARTADON	Installation HFS-BC
	Details HFS-15
	MFD-BC
	MFS, MFD
	HY-TRAX® Retrofit System
	MFD-MV
	MFS-HV
	AMS, AMD
	FS
	AMFS
	KLS, KLD
	МСО
	AKS, AKD
	LSN, LSA, LSW
	X Series
	OLF Compact
How to Build a Valid Model Number for a Schroeder Filtration System Adapter RFSA:	Model Number
BOX 1 BOX 2	Selection OLF-P
	NxTM
BOX 1 BOX 2 can nave multiple options.	VEU-F
RFSA – = RFSA	VMU
	IXU
BOX 1 BOX 2	Triton-A
Model Options	Triton-E
RFSA Omit = For use with Kidney Loop	NAV
Filtration Products 1 = Optional MFS/MFD Fitting Kit	SVD01
	OXS

Appendix

HFS-BC Handy Filter Systems Basic Cart

Features and Benefits

- Compact size, easily transported
- Now available with 12 V DC Power Option, allowing for system power to be drawn directly from your heavy machinery
- Cartridge elements have 25% higher dirt holding capacity compared to spin-on filters
- Top-ported filter provides easy element service
- Can be used as an efficient "tank-topper" solution for drums of mineral-based fluids
- Optional Backpack Version available for ease of transport across distances

Applications

- Supplementing continuous filtration by system filters
- Cleaning up a hydraulic system following component replacement
- Filtering new fluid before it is put into service
- Transferring fluid from drums to system reservoirs

Description

Schroeder's Handy Filter System Basic Cart is a compact, self-contained "light-duty" filtration system equipped with high efficiency, high capacity elements capable of removing particulate contamination and/or water quickly, conveniently and economically. It is perfect for cleaning up existing systems as well as for pre-filtering new fluids, since new fluids often have contamination levels significantly higher than that recommended for most hydraulic systems.

The filtration system's compact, lightweight design with replaceable element cartridge and reusable bowl minimizes landfill waste. Element service is easily accomplished through the top-ported filter housings. The optional dual filter assembly allows for water and particulate removal or staged particulate contamination removal.

Specifications

Flow Rating:	4 gpm (15.14 L/min) max
Maximum Viscosity:	1,600 SUS (350 cSt)
Hose Pressure Rating:	30 psig (2.0 bar) @ 150°F (65.6°C) Full vacuum @ 150°F (65.6°C)
Fluid Temperature:	25°F to 150°F (-4°C to 65°C)
Material:	Element case: Aluminum
Seal Material:	Buna N
Compatibility:	All petroleum based hydraulic fluid. Contact factory for use with other fluids.
Motor:	115 VAC single phase .25 hp
Weight:	Single housing - 40 lbs
	Dual housing - 44 lbs
	BackPack version - 39 lbs (Does not include weight of hose/wands)

For replacement element part numbers, please see "Appendix Section - Replacement Elements" of this catalog.

Handy Filter Systems Basic Cart HFS-BC

Lenath

65 1000
CS 1939
CSI-C-11
HY-TRAX®
RBSA
CSM
FCU
MCS
AS
SMU
СТИ
ЕРК
Trouble
Check Plus
HMG2500
HMG4000
ET-100-6
НТВ
RFSA

low to Build a Valid Model Number for a Schroeder HFS-BC:				
BOX 1 HFS-BC –	BOX 2 BOX 3 BOX 4 BOX 5	BOX 6 BOX 7 BOX 8	BOX 9	
Example: NO7	E: One option per box			
BOX 1 HFS-BC –	BOX 2 BOX 3 BOX 4 BOX 5 A - 2 - 09 - H10	BOX 6 BOX 7 BOX 8 - H05 - B - E -	BOX 9 = HFS-BCA209H10H05BE	
BOX 1	BOX 2	BOX 3	BOX 4	
Model	Voltage	Number of Filter Housings	Element	

	A = 120VAC / 1-Phase / 60 Hz	1 = Single	09	
пгэ-вс	T = 12 Volt DC Option	2 = Dual		
	BOX 5		E	BOX 6

Element Media First Housing		Element Media Second Filter (Dual Only)
H03 = 3 µm Excellement [®] Z-Media [®] (synthetic)	Omit =	Single housing and Backpack version
H05 = 5 µm Excellement [®] Z-Media [®] (synthetic)	H03 =	³ µm Excellement [®] Z-Media [®] (synthetic)
H10 = 10 µm Excellement [®] Z-Media [®] (synthetic)	H05 =	5 µm Excellement [®] Z-Media [®] (synthetic)
H25 = 25 µm Excellement [®] Z-Media [®] (synthetic)	H10 =	10 µm Excellement [®] Z-Media [®] (synthetic)
GW = Water Removal	H25 =	25 µm Excellement [®] Z-Media [®] (synthetic)
	GW =	Water Removal

BOX 7	BOX 8	BOX 9
Seal Material	Clogging Indicator	Options
B = Buna	E = Standard Visual Indicator	BP = BackPack Version (Single Housing Only)

	RFSA
Model Number	HFS-BC
Selection	HFS-15
	MFD-BC
	MFS, MFD
	HY-TRAX® Retrofit System
	MFD-MV
	MFS-HV
	AMS, AMD
	FS
	AMFS
	KLS, KLD
	МСО
	AKS, AKD
	LSN, LSA, LSW
	X Series
	OLF Compact
	OLF
	OLF-P
	NxTM
	VEU-F
	VMU
	IXU
	Triton-A
	Triton-E
	NAV
	SVD01

HFS-15 Hand Held Portable Filter

Hand Held Portable Filter

Premium

2	CS 1000
	CS 1939
	CSI-C-11
	HY-TRAX®
	RBSA
	CSM
	FCU
	MCS
	AS
	SMU
	СТИ
	ЕРК
	Trouble

Check Plus

ET-100-6

RFSA

HFS-BC

HFS-15

MFD-BC

	INIFS, MIFD	
DX 10	Model Number HY-TRAX® Selection Retrofit System	
	MFD-MV	
27.10	MFS-HV	
E = HFS-15E09DM10SKFE	AMS, AMD	
	FS	
BOX 4	AMFS	
Length	KLS, KLD	
09	МСО	
n	AKS, AKD	
	LSN, LSA, LSW	
	X Series	
6	OLF Compact	
Media	OLF	
[®] Z-Media [®] (synthetic)	OLF-P	
[®] Z-Media [®] (synthetic)	NxTM	
it [®] Z-Media [®] (synthetic)	VEU-F	
	VMU	
	IXU	
	Triton-A	
	Triton-E	
BOX 10	NAV	
Clogging Indicator	SVD01	
Back-pressure indicator	oxs	
SCHROEDER INDUSTRIES	95 Appendix	

Outlet 87.91 5.5 (12) (888) 5.5 (14)	6.70° (170) (1	Inlet 082 082 082 070 070 070 070 070 070 070 07	
How to Build a Valid Model Nur BOX 1 BOX 2 BOX 3 BOX 4 BOX HFS	nber for a Schroeder HFS 5 BOX 6 BOX 7 BOX 8 B 5 BOX 6 BOX 7 BOX 8 B 5 BOX 6 BOX 7 BOX 8 B 10 S K -	-15: DX 9 BOX 10 DX 9 BOX 10 F E = HFS-15E09DM10SKF	Model Number Selection
Model Size HFS 15 = 4 gpm (15 L/min) (for type "E" only) 10 = 2.6 gpm (10 L/min) (for type "P" only)	Type E = Economy P = Premium (w/ Monitoring)	Condition	
BOX 5 Filter Rating DM = Particulate Removal Element AM = Particulate and Water Removal BOX 7 Pump Version S = Vane pump	03 = 3 μm Exc 05 = 5 μm Exc 10 = 10 μm Ex 25 = 25 μm Ex GW = Water Re	BOX 6 Element Media ellement® Z-Media® (synthetic) ellement® Z-Media® (synthetic) cellement® Z-Media® (synthetic) cellement® Z-Media® (synthetic) moval	
BOX 8 Power Supply K = 120 V, 60 Hz, 1 Ph (0.25 kW)	BOX 9 Seal Material F = FKM (FPM, Viton [®])	BOX 10 Clogging Indicator E = Back-pressure indicator	

MFDBC Mobile Filter System - Basic Cart

10 gpm max 37.9 L/min

Features and Benefits

- Compact size, easily transported
- Top-ported filter provides easy element service
- D10 Auto-Reset Indicator indicates when filter elements require a change
- Hoses and connection tubes included (10' total length)
- Drip pan catches oil before it falls to the ground
- Off-line stationary system available see Kidney Loop System

Applications

- Supplementing continuous filtration by system filters
- Cleaning up a hydraulic system following component replacement
- Filtering new fluid before it is put into service
- Transferring fluid from storage tanks and drums to system reservoirs

Description

The Schroeder Mobile Filter System - Basic Cart is a compact, self-contained, "light-duty" filtration system equipped with high efficiency, high capacity elements capable of removing particulate contamination and/ or water quickly, conveniently and economically. It is perfect for cleaning up existing systems as well as for prefiltering new fluids, since new fluids often have contamination levels significantly higher than that recommended for most hydraulic systems.

The filtration system's compact, lightweight design with replaceable element cartridge and reusable bowl, minimizing landfill waste. Element service is easily accomplished through the top-ported filter housings. The MFD-BC includes a drip pan to help catch any oil before it falls to the ground. The dual filter assembly allows for water and particulate removal or staged, particulate contamination removal.

Specifications

Flow Rating:	10 gpm (37.9 L/min) max
Viscosity Range:	46 - 1,000 SUS (6 - 216 cSt)
Hose Pressure Rating:	30 psig (2.0 bar) @ 150°F (65.6°C) Full vacuum @ 150°F (65.6°C)
Fluid Temperature:	25°F to 150°F (-4°C to 65°C)
Bypass Valve Setting:	Cracking: 25 psi (1.7 bar)
Material:	Element Case: Aluminum
Seal Material:	Buna N
Compatibility:	All petroleum based hydraulic fluid. Contact factory for use with other fluids.
Motor:	115 VAC Single phase 1 hp
Weight:	102 lbs. (46.3 kg)

For replacement element part numbers, please see "Appendix Section - Replacement Elements" of this catalog.

Mok	oile Filter System - Basic Cart	MFDBC CS 1000 CS 1939
		CSI-C-11
		HY-TRAX®
		RBSA
		CSM
		FCU
		MCS
		AS
17.03		SMU
[]		СТИ
		ЕРК
		Trouble Check Plus
		HMG2500
		HMG4000
		ET-100-6
		НТВ
		RFSA
		HFS-BC
		HFS-15
		MFD-BC
		MFS, MFD
		HY-TRAX® Retrofit System
		MFD-MV
	Metric dimensions in ()	MFS-HV
Llow to Ruild a Valid Madel Num	hay fay Cabraaday MEDDC	
BOX 1 BOX 2 BOX 3 BOX 4 BOX	Der for Schroeder MFDBC:	Selection
Example: NOTE: One option per box BOX 1 BOX 2 BOX 3 BOX 4 BC	DX 5 BOX 6	MCO
MFDBC – 1 – 09 – H10 – H	105 – EXAMPLE 109H10H05	
		LSN, LSA, LSW
BOX 1 BOX 2 BOX 3	BOX 4	X Series
Model No. of Element Elements Length	Element Media First Filter	OLF Compact
MFDBC 1 09	H03 = 3 µm Excellement [®] Z-Media [®] (synthetic)	OLF
	H05 = 5 µm Excellement [®] Z-Media [®] (synthetic)	OLF-P
	H10 = 10 μm Excellement [®] Z-Media [®] (synthetic)	NxTM
	H25 = 25 µm Excellement® Z-Media® (synthetic) GW = Water Removal	VEU-F
BOX 5	BOX 6	VMU

BOX 5	BOX 6
Element Media Second Filter	Voltage
H03 = 3 µm Excellement [®] Z-Media [®] (synthetic)	Omit = 115 V / 60 Hz
H05 = 5 µm Excellement [®] Z-Media [®] (synthetic)	A = 220 V / 60 Hz
H10 = 10 µm Excellement [®] Z-Media [®] (synthetic)	B = 220 V / 50 Hz
H25 = 25 µm Excellement® Z-Media® (synthetic)	
GW = Water Removal	

NOTES:

Appendix

Triton-A

NAV

Weights MFS-1K MFS-2K MFS-3K MFD-1K MFD-2K MFD-3K lb (kg) lb (kg) lb (kg) lb (kg) lb (kg) lb (kg) gpm 170 (77) 180 (82) 190 (86) 185 (84) 203 (92) 220 (100) 7 227 (103) 14 170 (80) 187 (85) 197 (89) 192 (87) 210 (95)

N	lobile Filt	ration Systems	MFS	C 1000
		U.S. Patents 6568919 7604738	MED	S 1000
				SIC 11
	MFD			TDAV®
			11	
				KDOA
				CSIM
- MF507 = #1.00 [25] × 36.00 [914] LONG HOSE WAND MF514 = #1.25 [32] × 36.00 [914] LONG HOSE WAND		→ MFD07 = \$1.00 [25] × 36.00 [914] LONG HOSE WAND MFD14 = \$1.25 [32] × 36.00 [914] LONG HOSE WAND		FCU
				IVICS
INDICATOR				AS
		HOSE WRAPS		SIVIU
		7/16-20 UNF SAMPLING PORTS ₩ 50		CIU
		200 100 100 100 100 100 100 100		EPK
			Che	Trouble ock Plus
		SUCTION STRAINER		
¢10.00 [254]		\$10.00 [254]		162000
				T 100 6
How to Puild a Valid Model Number for	a Schroodor MES	Metric dimensions in ()		
BOX 1 BOX2 BOX3 BOX4 BOX5 BOX 6 BOX 7 BOX 8 BOX 8		•	Model Number	
MFS			Selection	
Example: NOTE: One option per box				HEC_15
BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 6 BOX 7 BOX 8 BOX 1 DOD 710 P		10007		
			NOTES:	S MED
BOX 1 BOX 2 BOX 3	BOX 4		2 or 3, Box 3 must be 09.	TDAY®
Model No. of Element Elements Length	Element Media First F	ilter	Retrofit	System
MFS 1 09 Z01 = 1 µm Ex	cellement [®] Z-Media [®] (syl cellement [®] Z-Media [®] (syl	nthetic)	If MFD is ordered, the quantity, length,	IFD-MV
3 27 Z05 = 5 µm Ex	cellement [®] Z-Media [®] (sy	nthetic)	and seals will be identical for both	VIFS-HV
$Z10 = 10 \mu\text{m}\text{F}$	Excellement [®] Z-Media [®] (s	ynthetic)	Box 6. AM	S, AMD
EWR = Water R	emoval	ynthetic)	H.5 seal designation may be used with 3 5 10 and 25u 7	FS
G03 = 3 µm Ex	cellement [®] Z-Media [®] (synt	hetic) w/GeoSeal®	(synthetic) and calls for EPR seals,	AMFS
G05 = 5 µm Ex G10 = 10 µm E	cellement® Z-Media® (synt sxcellement® Z-Media® (synt	hetic) w/GeoSeal [®]	stainless steel wire mesh in element(s)	LS, KLD
G25 = 25 μm E	xcellement [®] Z-Media [®] (syr	hthetic) w/GeoSeal®	coated enclosures on cart. H.5 not	MCO
GWR = Water R	emoval w/GeoSeal®		available with 7 AM gpm pump. Imron® AM	(S, AKD
BOX 5	BOX 6	BOX 7	is a registered trademark of LSN, LS	A, LSW
Element Media Second Filter (MFD Only)	Seal Material	Voltage	Box 7.	(Series
Z01 = 1 μm Excellement [®] Z-Media [®] (synthetic)	B = Buna	Omit = $115 \text{ V} / 60 \text{ Hz} / 1 \text{ - Phase}$	Hz options supplied OLF Co with starters, 230	ompact
$ZOS = 5 \ \mu m \ Excellement^{\circ} \ Z-Media^{\circ} \ (synthetic)$ $ZOS = 5 \ \mu m \ Excellement^{\circ} \ Z-Media^{\circ} \ (synthetic)$	V = Vitono	A = 250 V / 60 Hz / 3-Phase B = 460 V / 60 Hz / 3-Phase	Volt, 50 Hz units will have plug cut-off	OLF
Z10 = 10 µm Excellement [®] Z-Media [®] (synthetic)	Compatibility	C = 220 V / 50 Hz / 1-Phase	from power cord and include no	OLF-P
Z25 = 25 µm Excellement [®] Z-Media [®] (synthetic)		D = 250 V / 00 Hz / 1 Hase	reduced to ~5-gpm and 11-gpm.	NxTM
G03 = 3 μm Excellement [®] Z-Media [®] (synthetic) w/GeoSeal [®]	BOX 8	BOX 9	Contact factory for high viscosity	VEU-F
$G10 = 10 \ \mu\text{m} \text{ Excellement}^{\circ} \text{ Z-Media}^{\circ} \text{ (synthetic) w/GeoSeal}^{\circ}$	(gpm)	Omit = Without Particle Counter	Box 9.	VMU
G25 = 25 µm Excellement [®] Z-Media [®] (synthetic) w/GeoSeal [®]	07	P = Particle Counter	Particle counter option only available on 115VAC	IXU
GWK = Water Removal w/GeoSeal [®]		P-CSI = Particle Counter	60 hertz carts.	riton-A
		+ CSI-C-11 Option	not available with Skydrol fluids.	Triton-E
		P-CSI-W = Particle Counter + CSI-C-11	For replacement	NAV
		+ Water Sensor (No Display) Option	please see "Appendix Section - Replacement	SVD01
			Elements" of this catalog.	OXS

Appendix

HY-TRAX[®] Retrofit System Assembly

HY-TRAX[®] HY-TRAX[®] Retrofit System Assembly HYR

How to	Build a Valid Mo	del Number for a S	Schroeder HY-TRAX [®] Retrofit:
BOX 1 BO	X2 BOX3 BOX4 BOX 5 - - - - -	BOX 6 BOX 7	
Example:	NOTE: One option per bo	X	
BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 6 BOX 7 HYR - 12 - 2 - 0 = HYR1220			
BOX 1	BOX 2	BOX 3	BOX 4
Model	ISO Code	Display Option	Fluid Type
	12 = >4/>6/>14	1 = Without Display	0 = Hydraulic/Mineral Oil
нүк	13 = >2/>5/>15	2 = With Display	
	BOX 5	BOX 6	
An	alog Interfaces	Communications Op	ption Water Sensor Option

Alla	ilog interfaces	Communications Option	Water Sensor Option
Omit = 4-2	20 mA (Standard)	Omit = None	Omit = None
5 - 7-	10\/ Analog Output	CSI = CSI-C-11-00 ConditionSensor	$W = TestMate^{\mathbb{R}}$ Water Sensor
	Interface		

	CS 1000
	CS 1939
Model Number	CSI-C-11
Selection	HY-TRAX®
	RBSA
	CSM
	FCU
	MCS
	AS
	SMU
	СТИ
	ЕРК
	Trouble
	Check Plus
	HMG2500
	HMG4000
	ET-100-6
	НТВ
	RFSA
	HFS-BC
	HFS-15
	MFD-BC
	MFS, MFD
Re	HY-TRAX® trofit System
	MFD-MV
	MFS-HV
	AMS, AMD
	FS
	AMFS
	KLS, KLD
	МСО
	AKS, AKD
L	SN, LSA, LSW
	X Series
(OLF Compact
	OLF
	OLF-P
	NxTM
	VEU-F
	VMU
	IXU

NAV

Appendix

MFD-MV

Medium Viscosity Mobile Filtration Systems

6 or 10 gpm 22.7 to 37.9 L/min

Features and Benefits

- Ability to filter fluids having a viscosity up to 5,000 SUS
- Top-ported filter provides easy element service
- 7' hose and extension wands included (10' total length)
- Standard 18" filter housings

Applications

- Supplementing continuous filtration by system filters
- Cleaning up a hydraulic system following component replacement
- Filtering new fluid before it is put into service
- Transferring fluid from storage tanks and drums to system reservoirs

Description

The MFD-MV is a compact, self-contained filtration system equipped with high efficiency high capacity elements capable of removing particulate contamination and/or water quickly, conveniently and economically. It is perfect for cleaning up existing systems as well as for prefiltering new fluids, since new fluids often have contamination levels significantly higher than that recommended for most hydraulic systems. The MFD-MV dual filtration unit can be used to remove both water and particulate contamination or for staged particulate contamination removal.

Specifications

6 or 10 gpm (22.7 or 37.9 L/min) max
up to 5,000 SUS (1000 cSt)
30 psig (2.0 bar) at 150°F (65.6°C) Full vacuum at 150°F (65.6°C)
-20°F to 150°F (-29°C to 65°C)
Cracking: 30 psi (2 bar)
Manifold and cap: Cast Aluminum Element case: Steel
All petroleum based hydraulic fluid. Contact factory for use with other fluids.
1.0 hp 110 VAC/60 Hz TEFC (6 gpm) 1.5 hp 110 VAC/60 Hz TEFC (10 gpm)
Medium Viscosity Mobile Filtration Systems

MFD-MV

Appendix

for both filter housings.

High Viscosity Mobile Filtration Systems

3 gpm max

7.5 L/min

U.S. Patents 6568919 7604738

Features and Benefits

- Ability to filter fluids having a viscosity up to 15,000 SUS
- Flow rates up to 3 gpm
- 115 V AC single phase 1 1/2 HP motor
- Dual filtration unit, available to remove both water and particulate contamination or for staged particulate contamination removal
- Modular base eliminates hoses between components and minimizes leakage
- Base-ported filter provides easy element service from the top cap
- Ten-foot hose and extension tubes included (13' total length)
- Drip pan catches oil before it falls to the ground
- 27-inch housing is standard
- Integrated lifting eye option

Applications

- Supplementing continuous filtration by system filters
- Cleaning up a hydraulic system following component replacement
- Filtering new fluid before it is put into service
- Transferring fluid from storage tanks and drums to system reservoirs

Description

The Schroeder Mobile Filtration System for high viscosity applications is a compact, self contained filtration system equipped with high efficiency, high capacity elements capable of removing particulate contamination and/or water quickly, conveniently and economically. It is perfect for cleaning up existing systems as well as prefiltering and transferring fluids. Remember, new fluid does not mean clean fluid! Most new fluids have contamination levels significantly higher than is recommended for most hydraulic systems.

Specifications

Flow Rating:	3 gpm (7.5 L/min) max
Maximum Viscosity:	15,000 SUS (3236 cSt)
Hose Pressure Rating:	30 psig (2.0 bar) @ 150°F (65.6°C) Full vacuum @ 150°F (65.6°C)
Fluid Temperature:	25°F to 150°F (-4°C to 65°C)
Bypass Valve Setting:	Cracking: 40 psi (2.8 bar)
Material:	Manifold and cap: Cast Aluminum Element case: Steel
Compatibility:	All petroleum based hydraulic fluid. Contact factory for use with other fluids.
Motor:	115 VAC Single phase 1.5 hp
Element Change Clearance:	8.50 (215 mm) 1K (9, 18 or 27" depending on model configuration)
Weight:	MFS-HV - 230 lbs (104 kg); MFD-HV - 260 lbs (118 kg)

High Viscosity Mobile Filtration Systems

	U.S. Patents 6568919 7604738	MFD-HV CS 1939
MFS-HV	MFD-HV	CSI-C-11
	[674]	HY-TRAX®
		RBSA
		CSM
		FCU
		MCS
		AS
(1113) (1113)	44.55 [100	SMU
		СТИ
		ЕРК
		Trouble
		Check Plus
		HMG2500
		HMG4000
		ET-100-6
		НТВ
		RFSA
		HFS-BC
	上 L L L L L L L L L L L L L L L L L L L	HFS-15
		MFD-BC
How to Build a Valid Model Number for a Schr	roeder MFS-HV:	Model Number
MFD-HV		Selection Hy-IRAX® Retrofit System
Example: NOTE: One option per box		MFD-MV
BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 MED_HV 1 27 710 705	BOX 6 BOX 7 B 03 - MED-HV127710705B03	MFS-HV
		AMS, AMD
BOX 1 BOX 2 BOX 3	BOX 4	FS
Model No. of Elements Element Length	Element Media First Filter	AMFS
MFS-HV 1 18	$203 = 3 \ \mu m \ Excellement^{\circ} \ Z-Media^{\circ} \ (synthetic)$	KLS, KLD
	$Z10 = 10 \ \mu\text{m} \text{ Excellement}^{\circ} \text{ Z-Media}^{\circ} \text{ (synthetic)}$	МСО
NIFD-HV	Z25 = 25 μm Excellement [®] Z-Media [®] (synthetic)	AKS, AKD
	$G03 = 3 \ \mu m \ Excellement^{\circ} \ Z-Media^{\circ} \ (synthetic) \ w/GeoSeal^{\circ}$	LSN, LSA, LSW
	G05 = 5 μ m Excellement [®] Z-Media [®] (synthetic) w/GeoSeal [®]	X Series
	G10 = 10 µm Excellement [®] Z-Media [®] (synthetic) w/GeoSeal [®] G25 = 25 µm Excellement [®] Z-Media [®] (synthetic) w/GeoSeal [®]	OLF Compact
	GWR = Water Removal w/GeoSeal®	OLF
BOX 5	BOX 6 BOX 7	OLF-P
Element Media Second Elter (MED-HV Only)	Seal Material Pump Size(gpm)	NXIM
$Z03 = 3 \ \mu m \ Excellement^{\circ} \ Z-Media^{\circ} \ (synthetic)$	B = Buna 03	VEU-F
Z05 = 5 µm Excellement [®] Z-Media [®] (synthetic)	V = Viton®	NOTES:
Z10 = 10 μ m Excellement [®] Z-Media [®] (synthetic)		Box 5. When MFD is
EWR = Water Removal		ordered, Inton-A the number of Triton E
G03 = 3 µm Excellement [®] Z-Media [®] (synthetic) w/GeoSeal [®]		elements, element
G10 = 10 µm Excellement [®] Z-Media [®] (synthetic) w/GeoSeal [®]		length, and seals will be
G25 = 25 µm Excellement [®] Z-Media [®] (synthetic) w/GeoSeal [®]		identical for both filter

For replacement element part numbers, please see "Appendix Section - Replacement Elements" of this catalog.

Appendix

housings.

Air -Operated Mobile Filtration Systems

U.S. Patents 6568919 7604738

Metric dimensions in ().

Description

Schroeder's AMS and AMD carts feature a pneumatic motor in place of the standard electric motor. The pneumatic motor offers the same flow capability using the same components, but without the need for an electrical outlet. This provides a major advantage in the application of this unit. With no need for an electrical outlet, it is more portable than the standard electric-motored skids and carts.

Because most trucks and industrial machinery are already equipped with an air compressor, a simple connection to the 1/4" NPT port will easily power the 1.5 HP (or 4.0 HP) motor. At 70 psi, and 2000 rpm, this motor consumes less than 40 cfm (70 cfm for the 4.0 HP motor) of compressed air. Because no electricity is used, the pneumatic motor is ideal for working in hazardous environments such as mines.

NOTES:

Performance data represents a 4-Vane model with no exhaust restriction.

106 SCHROEDER INDUSTRIES

Air-Operated Mobile Filtration Systems U.S. Patents 6568919 7604738

 Supplement 	nting cont	inuous	filtratio	n by syst	em filters								Applications	CSI-C-11
Cleaning u	 Cleaning up a hydraulic system following component replacement Filtering new fluid before it is put into service 										HY-TRAX®			
 Filtering new fluid before it is put into service Transferring fluid from storage tanks and drums to system reservoirs 								RBSA						
Transferrin	Transferring fluid from storage tanks and drums to system reservoirs							CSM						
Field applie	cations or) service	e trucks											FCU
	N/	Fl	low Rat	ing: 7 g	100 SUS (21	<mark>/min)</mark>	max and	d 14 gpm	(53.0 L/	' <mark>min) ma</mark>	X		Specifications	MCS
	IV	axiiiiu	II VISCO	Hig	her viscosi	ty vers	, sion avai	lable. Co	ntact fac	tory for	details.			AS
	Housin	ig Press	ure Rat	ing: 250	0 psi (17.2	bar) n 9 bar)	nax oper) min viel	ating ¹ Id						SMU
	F	luid Te	mperat	ure: 25	°F to 150°F	(-4°C	to 65°C	2) ²				_		CTU
	Ву	pass Va	lve Sett Mate	rial: Ma	acking: 30 j anifold and	psi (2 cap: (bar) Cast alur	ninum						EPK
		Co	mpatibi	Ele	ment case:	Steel	hydrau	lic fluid (ontact	factory		_		Trouble
		-		for	use with o	ther f	luids.			lactory				Check Plus
¹ For higher h	Element (lose pressu	Change Jre appl	Cleara ications	nce: 8.5 contact f	60″ (215 m factory.	m) 1K	(9, 18 o	r 27" de	bending	on mode	el config	uration)		HMG2500
² For higher to	emperatu	re appli	cations	contact fa	actory.									HMG4000
apm	AMS	-1K (ka)	AM Ib	IS-2K (ka)	AMS-3	BK (ka)	AM b	D-1K (ka)	AM lb	D-2K (ka)	AN b	ID-3K (ka)	Weights	ET-100-6
7	170	(77)	180	(82)	190	(86)	185	(84)	203	(92)	220	(100)		HTB
14	177	(80)	187	(85)	197	(89)	192	(87)	210	(95)	227	(103)		RFSA
How to Bui	ild a Vali	d Mor	lol Nu	nher fo	r Schroe	der A	MS.						Model	HFS-BC
BOX 1 E	BOX 2	BOX 3	BOX 4	BOX 5	BOX 6	BO	X 7						Number	HFS-15
AMS –			-										Selection	MFD-BC
Example: NOT	TE: One opt	tion per k		POVE	POVE	PO	V 7							MFS, MFD
AMS -	1 -	09 ·	- Z10		– B	- 1	4 =	AMS10)9Z10B	14			R	HY-TRAX® etrofit System
BOX 1	BOX	2	_	BOX 3					BOX 4					MFD-MV
Model	No. of Ele	ments	Elen	nent Leng	th		E	lement N	ledia Firs	t Filter	-			MFS-HV
AMS	2			18	Z)3 = 3	µm Exce	llement® 2 llement® 2	Z-Media® Z-Media®	(syntheti	c) c)			AMS, AMD
AMD	3			27	ZC)5 = 5	µm Exce	llement® 2	Z-Media®	(syntheti	c)			FS
7 1112					Z1 72	10 = 1 25 = 2	0 µm Exc 25 µm Exc	cellement cellement	[®] Z-Media [®] Z-Media	a [®] (synthe a® (synthe	etic)			AMFS
					EW	/R = V	Vater Rer	noval	2 mean	a (oynene				KLS, KLD
					GC)3 = 3	B µm Exce	ellement®	Z-Media®	(synthet)	ic) w/Ge	oSeal®		MCO
					G1	10 = 1	0 µm Exce	cellement	[®] Z-Media	a® (synthe	etic) w/Ge	eoSeal®		AKS, AKD
					G2	25 = 2	25 µm Exc	cellement	® Z-Media	a® (synthe	etic) w/G	eoSeal®		LSN, LSA, LSW
					GW	/R = V	Vater Rer	noval w/0	GeoSeal®					X Series
		BOX	5				B	OX 6		BC	DX 7	_	NOTES:	OLF Compact
Elei	ment Medi	a Secon	d Filter (AMD Only	1)		Seal	Material		Pump S	ize(gpm)	2 equals 2 or 3,	OLF
$Z01 = 1 \ \mu m$ $Z03 = 3 \ \mu m$	i Excelleme i Excelleme	nt® Z-Me nt® Z-Me	edia® (sy edia® (sy	nthetic) nthetic)			B = F	suna			14		09.	OLF-P
$Z05 = 5 \mu m$	Excelleme	nt® Z-Me	edia® (sy	nthetic)									Box 5. When AMD is	NxTM
$Z_{10} = 10 \mu r$ $Z_{25} = 25 \mu r$	m Excellem	ent® Z-N	neula® (s Aedia® (s	ynthetic)									ordered, the number of	VEU-F
EWR = Wate	r Removal	nt® 7-M	odia® (svi	nthetic) w	/GeoSeal®								elements, element	VMU
$G05 = 5 \mu m$ $G05 = 5 \mu m$	Excelleme	nt [®] Z-Me	edia [®] (sy	nthetic) w	/GeoSeal®								length, and seal will be identical	IXU
G10 = 10 µr G25 = 25 µr	m Excellem m Excellem	ent [®] Z-N ent® Z-N	⁄iedia® (s ∕iedia® (s	ynthetic) v ynthetic) v	v/GeoSeal® v/GeoSeal®								for both filter housings.	Triton-A
GWR = Wate	er Removal	w/GeoSe	eal®										Box 7.	Triton-E
													07 gpm - 50 CFM at 70 psi 14 gpm - 70 CFM at 70 psi	NAV

For replacement element part numbers, please see "Appendix Section - Replacement Elements" of this catalog.

Appendix

Filtration Station® SMART

9 gpm or 3-8 gpm variable 34 L/min or 11-30 L/min

Description

The Filtration Station[®] (FS) is capable of flushing, filtering, and monitoring ISO cleanliness with user-defined, automatic features. The FS is designed to transfer fluid through two (2) K9 filters in series for staged particulate or water/particulate removal. The FS is always furnished with two filter housings. Both filters are top-loading and include element indicators in the cap. A particle monitor reads samples from the pump discharge and displays ISO contamination codes on the control panel. The monitor allows the user to input the desired ISO cleanliness codes for the fluid. In auto mode, the system will run until the cleanliness codes are reached. Upon reaching the codes, the pump will stop and the cycle complete light will come on. When in manual mode, the system will run continuously and display the ISO codes. The included water sensor reports the water saturation of the fluid, which is displayed on the control panel.

Specifications

Flow Rating:	9 gpm (34 l/min) fixed or 3-8 gpm (11-30 l/min) variable
Motor:	1.5 HP - 15 amps at 120 volts AC for fixed flow 1 HP - 10 amps at 120 volts AC for variable flow
Viscosity:	60 - 1,000 SUS (10-216 cSt)
Fluid Temperature Range:	-20°F to 150°F (-29°C to 65°C)
Bypass Valve Setting:	Cracking: 30 psi (2 bar) x 2
Compatibility:	All petroleum-based hydraulic fluid. Contact factory for use with other fluids.
Element Change Clearance:	8.50" (215 mm) 1K
Weight:	195 lbs (89 kg)
Protection Class:	IP54 (DIN 40050)

*Note: Optional front caster set PN: 7627132 includes (2) plate mount swivel casters with brake, installation hardware and mounting instructions.

Element Performance Information

	Filtration Rat	ting Per ISO 4572/N article counter (APC) cal	IFPA T3.10.8.8 librated per ISO 4402	Filtration Ratin Using APC calibra	g wrt ISO 16889 ated per ISO 11171	Dirt Holding
Element	$\beta_X \ge 75$	$\beta_X \ge 100$	$\beta_X \ge 200$	β _X (c) ≥ 200	β _X (c) ≥ 1000	Capacity gm
<z5 kkz5<="" th=""><th>2.5</th><th>3.0</th><th>4.0</th><th>4.8</th><th>6.3</th><th>119/238</th></z5>	2.5	3.0	4.0	4.8	6.3	119/238
<z10 kkz10<="" th=""><th>7.4</th><th>8.2</th><th>10.0</th><th>8.0</th><th>10.0</th><th>108/216</th></z10>	7.4	8.2	10.0	8.0	10.0	108/216
<z25 kkz25<="" th=""><th>18.0</th><th>20.00</th><th>22.5</th><th>19.0</th><th>240.</th><th>93 / 186</th></z25>	18.0	20.00	22.5	19.0	240.	93 / 186

TECHNOLOGY INSIDE FIITRATION STATION	FS cs 1000
U.S. Patents 69793	397 CS 1939
	CSI-C-11
	HY-TRAX®
	RBSA
	CSM
	FCU
	MCS
	AS
	SMU
	CIU
	EPK
	Trouble Check Plus
	HMG2500
	HMG4000
	ET-100-6
	НТВ
	RFSA
24.00 Metric dimensions in	(). HES-BC
[610] [881]	HFS-15
How to Build a Valid Model Number for a Schroeder FS:	Model Number
$ \mathbf{FS} - $	Selection WFS, WFD
Example: NOTE: One option per box	Retrofit System
BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 6 BOX 7 BOX 8 BOX 9	MFD-MV
$F_{2} = A + T + 27 + 205 + 203 + B + 9 + W = F_{2}A_{1}Z_{2}U_{2}Z_{0}B_{0}W$	MFS-HV
BOX 1 BOX 2 BOX 3 BOX 4 BOX 5	AMS, AMD
Model Voltage No. of Element Length Element Media First Filter	FS
FS $A = 120 \text{ V}/60 \text{ Hz}$ 1 09 $Z01 = 1 \text{ µm Excellement}^{\circ} \text{ Z-Media}^{\circ} \text{ (synthetic)}$ $B = 220 \text{ V}/60 \text{ Hz}$ 2 18 $Z03 = 3 \text{ µm Excellement}^{\circ} \text{ Z-Media}^{\circ} \text{ (synthetic)}$	AMFS
C = 220 V / 50 Hz $C = 220 V / 50 Hz$	KLS, KLD
$Z10 = 10 \ \mu m \ Excellement^{\circ} \ Z$ -Media ^{\earrow} (synthetic)	МСО
EWR = Water Removal	AKS, AKD
G03 = 3 µm Excellement [®] Z-Media [®] (synthetic) w/GeoSea	le LSN, LSA, LSW
$GUS = 5 \ \mu m \ Excellement^{\circ} Z-Media^{\circ} (synthetic) \ W/GeOSea G10 = 10 \ \mu m \ Excellement^{\circ} Z-Media^{\circ} (synthetic) \ W/GeOSea G10 = 10 \ \mu m \ Excellement^{\circ} Z-Media^{\circ} (synthetic) \ W/GeOSea G10 = 10 \ \mu m \ Excellement^{\circ} Z-Media^{\circ} (synthetic) \ W/GeOSea G10 = 10 \ \mu m \ Excellement^{\circ} Z-Media^{\circ} (synthetic) \ W/GeOSea G10 = 10 \ \mu m \ Excellement^{\circ} Z-Media^{\circ} (synthetic) \ W/GeOSea G10 = 10 \ \mu m \ Excellement^{\circ} Z-Media^{\circ} (synthetic) \ W/GeOSea G10 = 10 \ \mu m \ Excellement^{\circ} Z-Media^{\circ} (synthetic) \ W/GeOSea G10 = 10 \ \mu m \ Excellement^{\circ} Z-Media^{\circ} (synthetic) \ W/GeOSea G10 = 10 \ \mu m \ Excellement^{\circ} Z-Media^{\circ} (synthetic) \ W/GeOSea G10 = 10 \ \mu m \ Excellement^{\circ} Z-Media^{\circ} (synthetic) \ W/GeOSea G10 = 10 \ \mu m \ Excellement^{\circ} Z-Media^{\circ} (synthetic) \ W/GeOSea G10 = 10 \ \mu m \ Excellement^{\circ} Z-Media^{\circ} (synthetic) \ W/GeOSea G10 = 10 \ \mu m \ Excellement^{\circ} Z-Media^{\circ} (synthetic) \ W/GeOSea G10 = 10 \ \mu m \ Excellement^{\circ} Z-Media^{\circ} (synthetic) \ W/GeOSea G10 = 10 \ \mu m \ Excellement^{\circ} Z-Media^{\circ} (synthetic) \ W/GeOSea G10 = 10 \ \mu m \ Excellement^{\circ} Z-Media^{\circ} (synthetic) \ W/GeOSea G10 = 10 \ \mu m \ Excellement^{\circ} Z-Media^{\circ} (synthetic) \ W/GeOSea G10 = 10 \ \mu m \ Excellement^{\circ} Z-Media^{\circ} (synthetic) \ W/GeOSea G10 = 10 \ \mu m \ Excellement^{\circ} Z-Media^{\circ} (synthetic) \ W/GeOSea G10 = 10 \ \mu m \ Excellement^{\circ} Z-Media^{\circ} (synthetic) \ W/GeOSea G10 = 10 \ \mu m \ Excellement^{\circ} Z-Media^{\circ} (synthetic) \ W/GeOSea G10 = 10 \ \mu m \ Excellement^{\circ} Z-Media^{\circ} (synthetic) \ W/GeOSea G10 = 10 \ \mu m \ Excellement^{\circ} Z-Media^{\circ} (synthetic) \ W/GeOSea G10 = 10 \ \mu m \ Excellement^{\circ} Z-Media^{\circ} (synthetic) \ W/GeOSea G10 = 10 \ \mu m \ Excellement^{\circ} Z-Media^{\circ} (synthetic) \ W/GeOSea G10 = 10 \ \mu m \ Excellement^{\circ} Z-Media^{\circ} (synthetic) \ W/GeOSea G10 = 10 \ \mu m \ Excellement^{\circ} Z-Media^{\circ} (synthetic) \ W/GeOSea G10 = 10 \ \mu m \ Excellement^{\circ} Z-Media^{\circ} (synthetic) \ W/GeOSea G10 = 10 \ \mu m \ Excellement^{\circ} Z-Media^{\circ} (synthetic) \ W/GeOSea G10 =$	al [®] X Series
G25 = 25 μm Excellement [®] Z-Medi [®] (synthetic) w/GeoSea	al® NOTES: OLF Compact
Element Media Second Filter	Box 2. A plug is not ULF provided for options B & C
Z01 = 1 μm Excellement [®] Z-Media [®] (synthetic)	in Box 2 (220 V). If C is chosen,
Z03 = 3 µm Excellement [®] Z-Media [®] (synthetic) Z05 = 5 µm Excellement [®] Z-Media [®] (synthetic)	flow rate will be reduced to 7 and
$Z10 = 10 \ \mu\text{m} \text{Excellement}^{\circ} \text{Z-Media}^{\circ} \text{(synthetic)}$	6 gpm.
Z25 = 25 μm Excellement [®] Z-Media [®] (synthetic) EWR = Water Removal	=1, Box 4 must be either 18 or 27:
G03 = 3 μm Excellement [®] Z-Media [®] (synthetic) w/GeoSeal [®] BOX 7 BOX 8 BOX 9	when Box 3 =2 or 3, Triton-A
G05 = 5 µm Excellement [®] Z-Media [®] (synthetic) w/GeoSeal [®] Seal Material Pump Size Water Sensor G10 = 10 µm Excellement [®] Z-Media [®] (synthetic) w/GeoSeal [®] B = Buna 9 = 9 gpm W = TestMate [®]	Box 4 must be 09. Triton-F
G25 = 25 µm Excellement® Z-Medi® (synthetic) w/GeoSeal® V = Viton® D = DC drive, Water Sense	Dr Box 9. The Water repror
GVVK = vvater Kemoval W/GeoSeal* Variable now, 3-8 gpm	is to be used as a reference tool SVD01
For replacement element part numbers, please see "Appendix Section - Replacement Elements" of this catalog.	for hydraulic oil analysis purposes OXS only.

Appendix

AMFS Asset Management Filtration Station[®]

5 gpm 19 L/min

Features and Benefits

- Complete tracking of hydraulic fluid conditions by equipment name
- Provides automatic record-keeping, trending and analysis of the fluid
- Ideal for managing multiple equipment assets
- Automatically shuts down when the selected ISO cleanliness is reached
- Dual staged filters for both water and/or contaminated removal bypass valve allows cart to be used as a transfer cart
- Real Time data displays cleanliness and water saturation
- Selectable ISO target levels
- Only 3 entry fields needed to start the system and record data
- Hoses and connection tubes included (13' total length)

Applications

- In-Plant Service: Filter to desired cleanliness levels and extend component life
- Mobile Dealer Networks: Aid in certified re-builds,
 - service maintenance contracts and total maintenance & repair programs
- Industry
- Paper Industry
- Power Generation
- Mobile Vehicles
- Steel Making

Description

The Asset Management Filtration Station® (AMFS) is a complete fluid management system designed to manage fluid cleanliness, so that the greatest return of that asset is achieved. The AMFS is an all-in one system that monitors your fluid condition, filters out contaminants and tracks all the necessary data needed for trend analysis and record keeping by asset number or name. The on-board rugged PC records the ISO code and water saturation level, provides a graphical display of the data in real time and shuts down when the selected cleanliness level is reached. Each asset file created automatically is separately labeled and summarized to quickly inform maintenance on the condition of the fluid, and each run of the fluid is logged by date and time, providing a complete history of the equipment's fluid.

Specifications

Flow Rating:	5 gpm (19 L/min)
Motor:	1.5 HP - 15 FLA at 120 volts AC
Viscosity Range:	60 - 1,000 SUS (10 - 216 cSt)
Operating Temperature:	-20°F to 150°F (-29°C to 65°C)
Bypass Valve Setting:	Cracking: 30 psi (2 bar) x 2
Compatibility:	All petroleum-based hydraulic fluid compatible with Viton®
Element Change Clearance:	17.5" KK / 26.5" 27K
Weight:	200 lbs (440 kg) <i>approx.</i>
Dimensions:	26.6" x 25.25" x 50.0" (675 x 641 x 1270 mm)
*Note: Optional front caster set PN: 7627132 ir	ocludes (2) plate mount swivel casters with brake installation bardware and

mounting instructions.

Asset Management Filtration Station[®] AMFS

							CS 1939
							CSI-C-11 HY-TRAX® RBSA CSM FCU MCS AS
			46.70 [11106] 50.89 [1285]				CTU EPK Trouble Check Plus HMG2500
24.89 [632]		28.98 [736]		Me	etric dimensions in ().		HMG4000 ET-100-6 HTB RFSA HFS-BC HFS-15
GeoSeal [®] Element	Filtration Ration Ration Batter $B_X \ge 75$	ing Per ISO 4572/N rticle counter (APC) ca $\beta_X \ge 100$	IFPA T3.10.8.8 librated per ISO 4402 $\beta_X \ge 200$	Filtration Rat ^{Using APC cali B_X(c) ≥ 200}	ing wrt ISO 16889 ^{brated} per ISO 11171 $\beta_{\chi}(c) \ge 1000$	Element Performance Information	MFD-BC MFS, MFD HY-TRAX®
KKGZ3/27KGZ3	<1.0	<1.0	<2.0	4.0	4.8		Retrofit System
KKGZ5/27KGZ5	2.5	3.0	4.0	4.8	6.3		MFD-MV
KKGZ10/27KGZ10	7.4	8.2	10	8.0	10.0		MFS-HV
		GeoSeal® Element KKGZ3V KKGZ5V	DHC (gm) 230 238 216	GeoSeal® Element 27KGZ3V 27KGZ5V	DHC (gm) 345 357	Dirt Holding Capacity	AMS, AMD FS AMFS KIS KID
		KKGZIUV	216	Z/KGZIUV	324		KLJ, KLD
How to Build a Va	BOX 3 BOX 4	BOX 5	chroeder AMI	FS:		Model Numbe Selection	r AKS, AKD
Example: NOTE: One opt	tion per box					Preferred order codes designate	V Corios
BOX 1 BOX 2	BOX 3 BOX 4	BOX 5				shorter lead times and faster delivery	A Series
AMFS – 1 –	27 – G05	- G03 = AN	IFS127G05G03	3			
BOX 1 BOX	.2 B(OX 3		BOX 4			OLF
Model No. e Eleme	of Elemer	nt Length	Elen	nent Media First Fi	lter		OLF-P
AMFS 1		18 G	03 = 3 µm Exceller	ment® Z-Media® (sy	nthetic) w/ GeoSeal®		NxTM
		27 G	$05 = 5 \ \mu m Exceller$	ment [®] Z-Media [®] (sy	nthetic) w/ GeoSeal®		VEU-F
		G	$10 = 10 \ \mu m Excelle$	ement [®] Z-Media [®] (synthetic) w/ GeoSeal®		VMU
		G	25 = 25 μm excene NR = Water Remov	anent" z-ivieula" (: val w/ GeoSeal®	synthetic) w/Geoseal*		IXU
Flomon	BOX 5	ter					Triton-A
$G03 = 3 \ \mu m Excelleme$	ent [®] Z-Media [®] (synt	hetic) w/ GeoSeal [®]					Triton-E
G05 = 5 µm Excelleme	ent [®] Z-Media [®] (synt	hetic) w/ GeoSeal®)				NAV
$G10 = 10 \ \mu m Excellem$	nent® Z-Media® (syr	nthetic) w/ GeoSea	For replacem	ant element part p	umbers please		SVD01
$G25 = 25 \mu m$ Excellem	ent® Z-Media® (syr سر GeoSeal®	nthetic) w/GeoSeal	see "Appendi	x Section - Replace	ement Elements"		OXS
	GWR = Water Removal w/ GeoSeal® of this catalog.						

Kidney Loop Systems

U.S. Patents 6568919 7604738

Compatibility: All petroleum based hydraulic fluid. Contact factory for use with other fluids.

Weight: KLS-1: 101 lb (45.9 kg)

Element Change Clearance 8.50" (215 mm) 1K

KLS-2: 112 lb (50.9 kg)

KLS-3: 123 lb (55.9 kg)

Motor: 115 VAC single phase 3/4 hp (7 gpm), 1-1/2 hp (14 gpm), or 230 and 460 VAC 3 phase power optional

KLD-1: 117 lb (53.2 kg)

KLD-2: 139 lb (63.2 kg)

KLD-3: 161 lb (73.2 kg)

112 SCHROEDER INDUSTRIES

Kidney Loop Systems U.S. Patents 6568919 7604738

Metric dimensions in ().

How to Build a Valid Model Number for a Schroeder KLD:							
BOX 1 BOX	BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 6 BOX 7 BOX 8 BOX 9						
KLD –							
Example: /	NOTE: One op	tion per box					
BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 6 BOX 7 BOX 8 BOX 9 KLD - 1 - 27 - 205 - 203 - B 7 - = KLD127Z05Z03B07							
BOX 1	BOX 2	BOX 3	BOX 4				
BOX 1 Model	BOX 2 No. of Elements	BOX 3 Element Length	BOX 4 Element Media First Filter				
BOX 1 Model	BOX 2 No. of Elements 1	BOX 3 Element Length 09	BOX 4 Element Media First Filter Z01 = 1 μm Excellement [®] Z-Media [®] (synthetic)				
BOX 1 Model KLS	BOX 2 No. of Elements 1 2	BOX 3 Element Length 09 18	BOX 4 Element Media First Filter Z01 = 1 μm Excellement [®] Z-Media [®] (synthetic) Z03 = 3 μm Excellement [®] Z-Media [®] (synthetic)				
BOX 1 Model KLS	BOX 2 No. of Elements 1 2 3	BOX 3 Element Length 09 18 27	BOX 4 Element Media First Filter Z01 = 1 µm Excellement® Z-Media® (synthetic) Z03 = 3 µm Excellement® Z-Media® (synthetic) Z05 = 5 µm Excellement® Z-Media® (synthetic)				

EWR = Water Removal

G03 = 3 µm Excellen G05 = 5 µm Excellen G10 = 10 µm Excelle G25 = 25 µm Excelle GWR = Water Remov	nent® Z-Media® (sy nent® Z-Media® (sy ment® Z-Media® (s ment® Z-Media® (s al w/GeoSeal®	nthetic) w/GeoSeal® nthetic) w/GeoSeal® synthetic) w/GeoSeal® synthetic) w/GeoSeal®	
BOX 5	BOX 6	BOX 7	.
Element Media Second Filter (KLD only)	Seal Material	Voltage	
Z01 = 1 µm Excellement [®] Z-Media [®] (synthetic)	B = Buna	Omit = 115 V / 60 Hz / 1-Phase	
Z03 = 3 µm Excellement [®] Z-Media [®] (synthetic)	V = Viton®	A = 230 V / 60 Hz / 3-Phase	
Z05 = 5 µm Excellement [®] Z-Media [®] (synthetic)		B = 460 V / 60 Hz / 3-Phase	
Z10 = 10 µm Excellement [®] Z-Media [®] (synthetic)		C = 220 V / 50 Hz / 1-Phase	
Z25 = 25 µm Excellement [®] Z-Media [®] (synthetic)		D = 230 V / 60 Hz / 1-Phase	
EWR = Water Removal	BOX 8	BOX 9	
$G05 = 5 \ \mu\text{m}$ Excellement 2-Media (synthetic) w/GeoSeal $G05 = 5 \ \mu\text{m}$ Excellement [®] Z-Media [®] (synthetic) w/GeoSeal [®]	Pump	Particle Counter	
G10 = 10 µm Excellement [®] Z-Media [®] (synthetic) w/GeoSeal [®]	Size	Omit = Without Particle Counter	
G25 = 25 µm Excellement° 2-IVIedia° (synthetic) W/GeoSeal° GWR = Water Removal w/GeoSeal®	14	P = Particle Counter	
		P-CSI = Particle Counter + CSI-C-11 Option	
		P-CSI-W = Particle Counter	

Z25 = 25 µm Excellement[®] Z-Media[®] (synthetic)

KLD	CS 1939
	CSI-C-11
	HY-TRAX®
	RBSA
	CSM
	FCU
	MCS
	AS
	SMU
	СТИ
	ЕРК
	Trouble Check Plus
	HMG2500
	HMG4000
	ET-100-6
	НТВ
Model Number	RFSA
Selection	HFS-BC
Preferred order	HFS-15
shorter lead times	MFD-BC
and faster denvery:	MFS, MFD
R	HY-TRAX® etrofit System
NOTES:	MFD-MV
Box 2 & 3 . When Box 2 equals 2 or 3,	MFS-HV
Box 3 must be 09.	AMS, AMD
Box 5 . When KLD is ordered, the	AMES
number of elements,	
element length, and	MCO
seals will be identical for	
both filter housings.	LSN, LSA, LSW
Box 7. Motor starter is	X Series
included with 3-Phase options	OLF Compact
Box 9.	OLF
Particle counter option only	OLF-P
Particle counter option only available on 115 V / 60 Hz	OLF-P NxTM
Particle counter option only available on 115 V / 60 Hz units. Particle counter is not	OLF-P NxTM VEU-F
Particle counter option only available on 115 V / 60 Hz units. Particle counter is not available with Skydrol fluids.	OLF-P NxTM VEU-F VMU
Particle counter option only available on 115 V / 60 Hz units. Particle counter is not available with Skydrol fluids. Contact factory if EPR	OLF-P NxTM VEU-F VMU IXU
Particle counter option only available on 115 V / 60 Hz units. Particle counter is not available with Skydrol fluids. Contact factory if EPR seals are required. Contact factory for	OLF-P NxTM VEU-F VMU IXU Triton-A
Particle counter option only available on 115 V / 60 Hz units. Particle counter is not available with Skydrol fluids. Contact factory if EPR seals are required. Contact factory for high viscosity version.	OLF-P NxTM VEU-F VMU IXU Triton-A Triton-E
Particle counter option only available on 115 V / 60 Hz units. Particle counter is not available with Skydrol fluids. Contact factory if EPR seals are required. Contact factory for high viscosity version. For replacement element P/Ns, please co. "A proper div	OLF-P NxTM VEU-F VMU IXU Triton-A Triton-E NAV
Particle counter option only available on 115 V / 60 Hz units. Particle counter is not available with Skydrol fluids. Contact factory if EPR seals are required. Contact factory for high viscosity version. For replacement element P/Ns, please see "Appendix Section - Replacement	OLF-P NxTM VEU-F VMU IXU Triton-A Triton-E NAV SVD01

SCHROEDER INDUSTRIES 113

+ CSI-C-11 + Water Sensor (No Display) Option

Kidney Loop Systems

U.S. Patents 6568919 7604738

 Usable with FluMoS Mobile
 App - HY-TRAX[®] option only

CSI-C-11 Compatible Product

KLD

Features and Benefits

- Single, double and triple bowl length option allows the flexibility of additional dirt-holding capacity
- Base-ported filter provides easy element service from the top cap
- D5 Dirt Alarm[®] indicates when filter element needs changed
- Two 7/16 20 UNF sampling port included on all models (upstream)
- Suction strainers to protect pump
- Optional CSI-C-11 Communication Interface for WLAN or LAN transmission of data and data storage capabilities

Applications

- Supplementing in-line filtration by system filters when adequate turnover cannot be attained
- Large volume systems requiring multiple filters in different locations
- Cleaning up a hydraulic system following component replacement

Description

Schroeder's off-line Kidney Loop System is a stationary version of the Mobile Filtration Medium Viscosity System. It is a compact, self-contained filtration system equipped with high efficiency, high capacity elements capable of removing particulate contamination and/or water quickly, conveniently and economically. This off-line system can be used to supplement in-line filters when adequate turnover cannot be achieved in the system. It is also ideal for free water removal. Like the Mobile Filtration System, the Kidney Loop System operates at a surprisingly low noise level. The KLS-MV single filtration unit can remove either water or particulate contamination. The KLD-MV dual filtration unit can be used to remove both water and particulate contamination, or for staged particulate contaminant removal.

Contamination Sensor for Remote Visbility Options

HY-TRAX[®] HV manual fluid sampling system: Schroeder now offers the HY-TRAX[®] manual fluid sampling system as an additional option allowing for real-time fluid condition monitoring. ISO particle counts are visually displayed on the TCM. Users will now know when they have reached their desired ISO contamination levels. For more information, please see page 102.

CSI-C-11: Schroeder also offers the CSI-C-11 Communication Interface for WLAN or LAN transmission of data and data storage capabilities. For more information, please see page 38.

Specifications	Flow Rating:	6 gpm (22.7 L/min) max and 10 gpm (37.0 L/min) max
	Viscosity Range:	40 - 5,000 SUS (4 - 1000 cSt)
	Fluid Temperature:	25°F to 150°F (-4°C to 65°C)
	Bypass Valve Setting:	Cracking: 30 psi (2 bar)
	Material:	Manifold and cap: Cast aluminum Element case: Steel
	Compatibility:	All petroleum based hydraulic fluid. Contact factory for use with other fluids.
	Motor:	115 VAC single phase 1 hp (6 gpm), 1-1/2 hp (10.4 gpm), or 230 and 460 VAC 3 phase power optional
	Element Change Clearance	8.50" (215 mm) 1K

Kidney Loop Systems U.S. Patents 6568919 7604738

How to Build a Valid Model Number for a Schroeder KLD-MV: BOX 1 BOX2 BOX3 BOX4 BOX5 BOX6 BOX7 BOX8 BOX9 KLD-MV Example: NOTE: One option per box BOX 1 BOX 2 BOX 3 BOX4 BOX 5 BOX 6 BOX 7 BOX 8 BOX 9 KLD-MV 27 G10 G05 V 06 = KLD-MV127G10G05V06 1 BOX 2 BOX 1 BOX 3 BOX 4 No. of Element **Element Media First Filter** Model Elements Length 09 G03 = 3 µm Excellement[®] Z-Media[®] (synthetic) w/GeoSeal[®] 1 **KLD-MV** G05 = 5 µm Excellement[®] Z-Media[®] (synthetic) w/GeoSeal[®] 2 18

KI S-W//	3	27	G10 = 10 µm Exe	cellement® Z-Medi	a® (synthetic) w/GeoSeal®	
			G25 = 25 µm Exe	ellement® Z-Medi	a® (synthetic) w/GeoSeal®	
			GWR = Water Rer	noval w/GeoSeal®		
		BOX 5		BOX 6	BOX 7	
Element Media Second Filter (KLD only)			Seal Material	Voltage		
G03 = 3 µm	n Excellement®	[®] Z-Media [®] (syr	nthetic) w/GeoSeal®	V = Viton®	Omit = 115 V / 60 Hz /	1-Phase
G05 = 5 µm Excellement [®] Z-Media [®] (synthetic) w/GeoSeal [®]			A = 230 V / 60 Hz /	3-Phase		
G10 = 10 µm Excellement [®] Z-Media [®] (synthetic) w/GeoSeal [®]			B = 460 V / 60 Hz /	3-Phase		
G25 = 25 µm Excellement [®] Z-Media [®] (synthetic) w/GeoSeal [®]			C = 220 V / 50 Hz /	1-Phase		
GWR = Wate	er Removal w/	'GeoSeal®			D = 230 V / 60 Hz /	1-Phase
				BOX 8	BOX 9	

Pump Size 06 10

	BOX 9
	Particle Counter
	Omit = Without Particle Counter
	P = Particle Counter
	P-CSI = Particle Counter + CSI-C-11 Option
	P-CSI-W = Particle Counter + CSI-C-11 + Water Sensor (No Display) Option

\L D	- I V I V	CS 1939
		CSI-C-11
		HY-TRAX®
		RBSA
		CSM
		FCU
		MCS
		AS
		SMU
		СТИ
		ЕРК
		Trouble Check Plus
		HMG2500
		HMG4000
		ET-100-6
		НТВ
Model	Number	RFSA
Selectio	on	HFS-BC
Preferred	l order	HFS-15
shorter lead times		MFD-BC
und fusic		MFS, MFD
	R	HY-TRAX® etrofit System
		MFD-MV
		MFS-HV
		AMS, AMD
NOTES:		FS
Box 2 & 3 . 2 eq	When Box uals 2 or 3,	AMFS
Box 09.	3 must be	KLS, KLD
Box 5 Wh	en KI D is	МСО
orde	ered, the	AKS, AKD
elem	ients,	LSN, LSA, LSW
leng	th, and	X Series
iden	tical for	OLF Compact
hous	sings.	OLF
Box 7. Mot	or starter is	OLF-P
inclu 3-Ph	ase options	NxTM

A and B.

For replacement element P/Ns, please see "Appendix Section - Replacement Elements" of this catalog.

Particle counter option only available on 115 V / 60 Hz units.

Box 9.

Δnr	non	div
		шл

Fail-Safe In-Line Mechanical Clean Oil Dispenser

U.S. Patent 7,604,738 for connecting end cap

Fail-Safe In-Line Mechanical Clean Oil Dispenser

U.S. Patent 7,604,738 for connecting end cap

			CSI-C-1
Flow Rating:	Up to 30 gpm (113 L/min) for 150 SUS (32 cSt) fluids	Filter	Corerr
Max. Operating Pressure:	900 psi (60 bar)	Housing	HY-TRAX®
Min. Yield Pressure:	3200 psi (220 bar), per NFPA T2.6.1	Specifications	RBSA
Rated Fatigue Pressure:	750 psi (52 bar) per NFPA T2.6.1-R1-2005		CSN
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		FCI
Bypass Setting:	Non-Bypassing System		MC
Porting Head & Cap:	Cast Aluminum		٨
Element Case:	Steel		л. СШ
Weight of MCO-1K:	21 lbs. (9.5 kg)		SMU
Weight of MCO-2K:	32 lbs. (14.5 kg)		CTI
Weight of MCO-3K:	43 lbs. (19.5 kg)		EPI
Element Change Clearance:	17.50" (445 mm) for KK; 26.5" (673 mm) for 27K		Trouble Check Plu

How to Build a Valid Model Number for a Schroeder MCO:

		ind model		
BOX 1 BOX	2 BOX 3 BOX	X4 BOX 5 BOX	X 6 BOX 7 BOX 8 BOX 9 BOX 10	
MCO-				
Example: N	OTE: One opt	tion per box		
BOX 1 BOX	2 BOX 3 BO	X4 BOX 5 BOX	X 6 BOX 7 BOX 8 BOX 9 BOX 10	
MCO – 3	– 27 – GO	05 – G03 – G0	03 - V - S - D5 - RV = MCO327G05G03G03V	SD5RV
BOX 1	BOX 2	BOX 3	BOX 4	
Model	No. of Housings	Element Length	Element Micron Rating First Filter (MCO1, MCO2, MCO3)	
MCO	1	27	G01 = 1 μm Z-Media [®] (synthetic)	
IVICO	2		G03 = 3 µm Z-Media [®] (synthetic)	
	3		G05 = 5 µm Z-Media [®] (synthetic)	
			G10 = 10 µm Z-Media [®] (synthetic)	
			G25 = 25 µm Z-Media [®] (synthetic)	

BOX 5	BOX 6
Element Micron Rating Second Filter (MCO2, MCO3)	Element Micron Rating Third Filter (MCO3 Only)
G01 = 1 µm Z-Media [®] (synthetic)	G01 = 1 µm Z-Media [®] (synthetic)
G03 = 3 µm Z-Media [®] (synthetic)	G03 = 3 µm Z-Media [®] (synthetic)
G05 = 5 µm Z-Media [®] (synthetic)	G05 = 5 µm Z-Media [®] (synthetic)
G10 = 10 µm Z-Media [®] (synthetic)	G10 = 10 μ m Z-Media [®] (synthetic)
G25 = 25 µm Z-Media [®] (synthetic)	G25 = 25 µm Z-Media [®] (synthetic)

BOX 7	BOX 8	BOX 9
Seal Material	Porting	Indicator Options (Only for outlet block)
V = Viton®	S = SAE 20	D5 = Visual Pop-up
	P = 1 1/4 NPTF	MS10 = Electrical with DIN Connector (male end only)
		MS11 = Electrical with 12ft. 4-conductor wire
		MS14 = Supplied with 5-pin Brad Harrison make connector and light (male end)
	BOX 10	
	Relief Valve	
Omit = Customer Supplied		
RV = Schroeder Relief Valve (set at 650 psi)*		

*The "RV" option is supplied as a loose item. Users have to install the relief valve within their Hydraulic System.

	SIVIU
	СТИ
	ЕРК
	Trouble
	Check Plus
	HMG2500
Model Numbe	HMG4000
Selection	ET-100-6
	HTB
	RFSA
	HFS-BC
	HFS-15
	MFD-BC
	MFS, MFD
	HY-TRAX® Retrofit System
	MFD-MV
	MFS-HV
	AMS, AMD
	FS
	AMFS
	KLS, KLD
	МСО
	AKS, AKD
	LSN, LSA, LSW
	X Series
	OLF Compact
	OLF
	OLF-P
	NxTM
	VEU-F
	VMU
	IXU
NOTES	Triton-A
NUTES:	Triton-E
pressure relie	f NAV
valve must be used. Should	svD01
be no greater than 650 psi.	OXS

Air-Operated Kidney Loop Systems

U.S. Patents 6568919 7604738

Features and Benefits

- Modular base eliminates connections between components and minimizes leakage
- Base-ported filter provides easy element service from the top cap
- Single, double and triple bowl length option allows the flexibility of additional dirt-holding capacity
- D5 Dirt Alarm[®] indicates when filter element needs changed
- Two 7/16 20 UNF sampling port included on all models (upstream)
- Suction strainers to protect pump

Applications

- Supplementing in-line filtration by system filters when adequate turnover cannot be attained
- Large volume systems requiring multiple filters in different locations
- Cleaning up a hydraulic system following component replacement
- Ideal location for water removal
- Field applications on service trucks

Description

Schroeder offers a kidney loop filtration system with a pneumatic motor in place of the standard electric motor. The pneumatic motor offers the same flow capability using the same components, but without the need for an electrical outlet. This provides a major advantage in the application of this unit. With no need for an electrical outlet, it is more portable than the standard electric-motored skids and carts.

Because most trucks and industrial machinery are already equipped with an air compressor, a simple connection to the 1/4" NPT port will easily power the 1.5 HP (or 4.0 HP) motor. At 70 psi, and 2000 rpm, this motor consumes less than 40 cfm (70 cfm for the 4.0HP motor) of compressed air. Because no electricity is used, the pneumatic motor is ideal for working in hazardous environments such as mines.

DANGER ZONE *DO NOT EXCEED 70 psi

Note: Performance data represents a 4-vane model with no exhaust restriction.

118 SCHROEDER INDUSTRIES

Air-Operated Kidney Loop Systems U.S. Patents 6568919 7604738

3.26 (83)

07 GPM = 14.65 (372) 14 GPM = 14.64 (372)

AKD1 = 98 lbs. (44 kg.)

AKD2 = 120 lbs. (54 kg.)

AKD3 = 142 lbs. (64 kg.)

07 GPM = (-16 ORB) 1.312-12UN-2B 14 GPM = (-20 ORB) 1.625-12UN-2B

Higher viscosity version available. Contact factory for details.

For higher temperature applications contact factory.

4.68 4.68 8.72

NdD NdD

07 GPM = (-16 ORB) 1.312-12UN-2B 14 GPM = (-20 ORB) 1.625-12UN-2B

Metric dimensions in ().

AKD

R.(6)

.56¢ (14) MTG. HOLE-(4 PLACES)

(380) (818) (928)

LENGTH = 14.95 (LENGTH = 24.36 (LENGTH = 24.36 (LENGTH = 33.76 (LENGTH = 33.76

≑ ¥

Flow Rating: 7 gpm (26.5 L/min) max and 14 gpm (53.0 L/min) max

CS 1000
CS 1939
CSI-C-11
(-TRAX®
RBSA
CSM
FCU
MCS
AS
SMU
СТИ

HI	
RFS	
HFS-B	

Retrofit System

Model	Number
Selectio	on

Specifications

KLS, KLD

AKS, AKD

	LSN, LSA, LSW
	X Series
TES:	OLF Compact
2 & 3. When Box	OLF
2 equals 2 or 3, Box 3 must be	OLF-P
09.	NxTM
5. When AKD is ordered, the	VEU-F
number of elements,	VMU
element length, and seal	IXU
will be identical for both filter	Triton-A
housings.	Triton-E
7. pm - 50 CFM at 70 psi	NAV
pm - 70 CFM at 70 psi	SVD01

Example: NOTE: One option per box BOX 3 BOX 4 BOX 5 BOX 6 BOX 7 BOX 2 Z10 Z05 В 14 = AKD109Z10Z05B14 09 1

BOX 5

AKS

3.50

() () .56# (14) MTG. HOLE (4 PLACES)

14.95 24.36 33.76

LENGTH

≚ăi

31

BOX 1

AKD

BOX 1

AKD

BOX 2

BOX 3

16.50

07 GPM = 14.25 (362) 14 GPM = 14.24 (362)

07 GPM = (-16 ORB) 1.312-12UN-2B 14 GPM = (-20 ORB) 1.625-12UN-2B

3.26

1/4" NPT AIR

(108)

4.68 5.12

QPM GPM Mdd

6#

Maximum Viscosity: 1,000 SUS (216 cSt)

Bypass Valve Setting:

Material:

Element Change Clearance: 8.50" (215 mm) 1K

How to Build a Valid Model Number for Schroeder AKS:

BOX 4

07 GPM = (-16 ORB) 1.312-12UN-2B 14 GPM = (-20 ORB) 1.625-12UN-2B

Fluid Temperature: 25°F to 150°F (-4°C to 65°C)

Cracking: 30 psi (2 bar)

AKS2 = 98 lbs. (44 kg.)

BOX 6

AKS3 = 108 lbs. (49 kg.)

Element case: Steel Compatibility: All petroleum based hydraulic fluid.

Weight: AKS1 = 86 lbs. (39 kg.)

Manifold and cap: Cast aluminum

Contact factory for use with other fluids.

BOX 7

BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 <u>Element</u> Element Media Second Filter (AKD Only) No. of Model **Element Media First Filter** ement Length 09 Z01 =1 µm Excellement[®] Z-Media[®] (synthetic) Z01 =1 µm Excellement[®] Z-Media[®] (synthetic) 1 AKS 2 18 Z03 = 3 µm Excellement® Z-Media® (synthetic) Z03 = 3 µm Excellement® Z-Media® (synthetic) NO 3 27 Z05 = 5 µm Excellement[®] Z-Media[®] (synthetic) Z05 = 5 µm Excellement® Z-Media® (synthetic) AKD Box Z10 =10 µm Excellement® Z-Media®(synthetic) Z10 =10 µm Excellement® Z-Media®(synthetic) Z25 = 25 µm Excellement[®] Z-Media[®](synthetic) Z25 =25 µm Excellement[®] Z-Media[®](synthetic) EWR =Water Removal EWR =Water Removal G03 = 3 µm Excellement® Z-Media® G03 = 3 µm Excellement[®] Z-Media[®] Box (synthetic) w/GeoSeal® (synthetic) w/GeoSeal® G05 =5 µm Excellement® Z-Media® G05 =5 µm Excellement® Z-Media® (synthetic) w/GeoSeal® (synthetic) w/GeoSeal® G10 =10 µm Excellement[®] Z-Media[®] G10 =10 µm Excellement[®] Z-Media[®] BOX 6 BOX 7 (synthetic) w/GeoSeal® (synthetic) w/GeoSeal® Pump Seal Material G25 =25 µm Excellement® Z-Media® G25 =25 µm Excellement[®] Z-Media[®] Size(qpm) (synthetic) w/GeoSeal® (synthetic) w/GeoSeal® B = Buna 07 GWR =Water Removal w/GeoSeal® GWR =Water Removal w/GeoSeal® Box 14 07 gj 14 gj

For replacement element part numbers, please see "Appendix Section - Replacement Elements" of this catalog.

X Series X Series Filter Skids SMART

Features and Benefits

- Clean fluid to protect and extend the life of expensive components
- Minimizes downtime and maintenance costs
- Designed to handle high viscosity oils up to 25,000 SUS (see Skid Selection; next page)
- Many component combinations and variable starter options allow the flexibility to match specific user needs
- Four wheel cart option provides product portability
- Integral drip pan with drain plug protects oil from spilling on the ground
- 1620 Testpoints provided at filter base for fluid sampling
- Market leading Schroeder Excellement[®] synthetic filtering media provides for quick, efficient clean up with maximum element life

Part of Schroeder Industries Energy Savings Initiative

Description

Schroeder's X Series filtration skids are compact, self-contained filtration systems equipped with high efficiency, high capacity elements capable of removing particulate contamination and/or water quickly and economically. They supplement in-line filters whenever the existing filtration is incapable of obtaining the desired ISO cleanliness level.

It is not uncommon for viscosity to be overlooked when specifying an off-line filtration unit. The results of this oversight can severely affect system efficiency and longevity, and render the filtration system useless when high viscosity fluid causes the filter to be in constant bypass. Schroeder considers maximum fluid viscosity, (at the minimum operating temperature) in conjunction with flow to properly size the pump and motor.

Standard X Series skids (X2, X3 and X7) include a hydraulic pump, electric motor, and a QF5 housing. Standard X Series Skids (X5, X6 and X8) include a hydraulic pump, electric motor, and dual K9 or QF5 housings. Many different component combinations provide the flexibility to match specific system viscosity, flow, and cleanliness requirements.

Schroeder's high viscosity X Series skids (X7 and X8) are designed to handle fluids that have a viscosity as high as 25,000 SUS. The skids have 39" long QF5 filters to efficiently clean the viscous fluids. The filters have a high dirt-holding capacity, capable of holding almost 1000 grams of dirt depending on the element. X7 and X8 skids include a pump, motor, QF5 filter, suction strainer, and dirt indicator. Various options can account for specific user needs.

Skid Selection

Series	Viscosity Range	Filter Housing(s)	Maximum Flow
X2	100 - 2000 SUS	(1) QF5	82 gpm (310 L/min)
Х3	100 - 5000 SUS	(1) QF5	37 gpm (140 L/min)
X5	100 - 2000 SUS	(2) QF5 or K9 in series	82 gpm (310 L/min)
X6	100 - 5000 SUS	(2) QF5 or K9 in series	37 gpm (140 L/min)
X7	100 - 25,000 SUS	(1) QF5	6 gpm (23 L/min)
X8	100 - 25,000 SUS	(2) QF5 in parallel	30 gpm (114 L/min)

SMART X Series Filter Skids X Series

Dual K9 Filter Version (Series X5 & X6)

Dual QF5 Filter Version (Series X5 & X6)

Single QF5 Filter Version (X7); For High Viscosity (up to 25,000 SUS)

Dual QF5 Filter Version (X8); For High Viscosity (up to 25,000 SUS)

Metric dimensions in ().

RBSA AS **Check Plus**

HFS-15

Retrofit System

X Series X Series Filter Skids

Specifications	Flow Rating:	Up to 82 gpm (310 L/min)
	Temp. Range:	0°F to 180°F (-17°C to 82°C)
	Bypass Valve Setting:	50 psi (3.5 bar) for skid series X2, X3, X5, X7, and X8 40 psi (2.8 bar) for skid series X6
	Fluid Viscosity:	Up to 25,000 SUS (see Skid Selection; previous page)
	Compatibility:	All petroleum based hydraulic fluids. Contact Schroeder for use with other fluids, including ester and skydrol.
	Pump:	X2-X6: Continuous duty gear pump with integral 150 psi relief. Flow dependent on skid series and motor. Refer to table below.
		X7-X8: Positive displacement rotary screw pumps
	Motor:	Horsepower dependent on skid series and flow. Refer to table below.
	Porting:	Dependent on flow. Refer to table below.

Pump and	Skid Series	Flow (gpm)	Motor (hp)	Skid Series	Flow (gpm)	Motor (hp)
Motor Data	X2	17 37 60 82	3 5 10 10	X6	17 37	5 10
	Х3	17 37	5 10	X7	06	2
	Х5	17 37 60 82	5 10 10 15	X8	30	15

Porting Data	Model	Flow (gpm)	Inlet Port Sizes	Outlet Port Sizes with K9 Filters	Outlet Port Sizes with Q39 Filters
	X2	17	1.50" NPT	-	#32 SAE (2")
	X2	37	2" NPT	-	#32 SAE (2")
	X2	60	2" NPT	-	#32 SAE (2")
	X2	82	2" NPT	-	#32 SAE (2")
	Х3	17	2" NPT	-	#32 SAE (2")
	Х3	37	2" NPT	-	#32 SAE (2")
	X5	17	1.50" NPT	#24 SAE (1.50")	#32 SAE (2")
	X5	37	2" NPT	#24 SAE (1.50")	#32 SAE (2")
	X5	60	2" NPT	#24 SAE (1.50")	#32 SAE (2")
	X5	82	2" NPT	-	#32 SAE (2")
	X6	17	2" NPT	#24 SAE (1.50")	#32 SAE (2")
	X6	37	2" NPT	#24 SAE (1.50")	#32 SAE (2")
	X7	06	1.50" NPT	-	#32 SAE (2")
	X8	30	2.50" NPT	-	#32 SAE (2")

Weight Data	Skid Series	Flow (gpm)	Weight (lb)*	Skid Series	Flow (gpm)	Weight (lb)*
	X2	17 37 60 82	311-504 348-577 Contact factory 597-705	X6	17 37	370-659 502-607
	Х3	17 37	340-580 461-566	X7	06	Contact factory
	Х5	17 37 60 82	396-684 497-849 Contact factory 947-1054	X8	30	Contact factory

*Weight dependent on options chosen.

Schroeder SMART X Series Filter Skids X Series

											CS 1939
How to	o Build a	a Valid	Model Num	ber fo	or a Schro	eder X Se	eries Filte	r Skid:	M	odel Number	CSI-C-1
BOX 1 E	BOX 2 BOX 3	BOX4 B	OX 5 BOX 6 BOX 7	BOX 8	BOX 9 BOX 1	I0 BOX 11			Se	lection	HY-TRAX®
ĿĿŀ											RBS/
BOX 1 B	OX2 BOX3	e option BOX4 BC	perbox DX 5 BOX 6 BOX 7	BOX 8	BOX 9 BOX 1	0 BOX 11			_ ا		CSIV
X5 –	17 – 3Q –	D -	C – B – N –	- N	– B – M	– N =)	(5173QDC	BNNBMN			FCL
											MC
BOX 1	BOX 2		BOX 3		BOX 4	BC	X 5	BOX 6			A
Model	Flow	K9 Filte	r QF5 Filter	Elen	nent Media	Elemen 2nd Filter (t Media	Seal			SMU
	(gpm)	ЗК	39Q	1	Ist Filter	X3, and	X7 skids)	Material			СТІ
V2	37		3Q 3Q	A = B =	3 Z Micron	N = NA A = Z1 (K)	or O)	B = Buna (Standard)			EP
XZ	60		3Q	C =	5 Z Micron	B = Z3 (K	or Q)	H = EPR	NO	TES:	Troubl
	82		3Q 30	D =	10 Z Micron	C = Z5 (K)	or Q)	V = Viton®	Boy Z1	 1. media not offered 	Check Plu
X3	37		3Q	M =	QPMLZ1	E = Z25 (k)	(or Q)		for	use in 500 to 2000 filtration skids	HMG250
	17	3K	3Q	P =	QPMLZ3	M = QPML	Z1	Deeper	Cor	ntact factory for	HMG400
X5	60	ЛС	3Q 3Q	к = S =	QPIVILZ5 QPMLZ10	P = QPIVIL R = QPML	Z3 Z5	Pleats	(X2	, X5) Z1 and Z3	ET-100-
	82	214	3Q	T =	QPMLZ25	S = QPML	Z10		use	in 2000 to 5000	нт
X6	37	3K 3K	3Q 30	W =	W	T = QPML W = W	Z25	Mater Demoval	Cor	filtration skids.	RFS
X7	06		3Q					vvater kemoval	spe (X3	cific applications. , X6)	HFS-B
X8	30		3Q						Box	(es 4 & 5.	HFS-1
									off	ered for use in 2000	to MFD-B
									Cor	ntact factory for	MFS. MFI
									spe All	cific applications. elements are	HY-TRAX
	BOX 7		BOX 8		BO	ΥQ		BOX 10	sing (no	gular construction stacked elements).	etrofit System
	Power		Motor Frame		Starter	Control		Dirt Alarm®	QP ava	ML elements only ilable in the QF5	MFD-M
N = 230)/ 460 VAC 3	3 PH.	N = TEFC		N – None	ions	N – D5 Inc	dicator on Filter Can	hou skie	using. X2, X3 and X7 Is have one filter	MFS-HV
E = 575	5 VAC 3 PH.		W = Washdown (N	IEMA	$A = 230 V_{c}$	AC	G = Differe	ential Pressure Gauge	hou	using, box 5. X8 skid	has <mark>AMS, AMI</mark> &
L			Design B)		B = 460 V	AC	M = MS11	Electric Cartridge	5 m	ust have same micro	on F
					E = 575 V.	AC	C = Differe	ential Pressure Gauge with	Box	(7.	AMF
							Electri	c Switch	575 CS4	will be built to standards.	KLS, KLI
									(E)	X7 and X8 only ilable with 230/460	МСС
	POV 11								VA	C 3 phase motor.	AKS, AKI
Misce	llaneous Op	otions							Во	xes 9 and 10.	LSN, LSA, LSV
N = N	lone								opt	tor starter control	X Serie
C = N R = C	Aobile	Rlood							dise "m	connect shut-off, otor on" light,	OLF Compac
P = P	article Count	ter							ele "ch	ctrical indicator ange element"	OL
Not	e: Vacuum	gauge a	and suction strain	er com	nes standard	on all availa	ble models.		ligh	nt, and type 4x wash wn enclosure.	OLE-I
									Cor	ntact factory for	NyTA
									cor	trol options.	VEII-
									Box Cor	< 11. ntinuous bleed	VLU-
									opt fil+	ion – to eliminate er air buildun in	
									cor	itinuously	IXI Tuiter
									Inc	udes cap	iriton-/
									and	l port, valve, l return line. (B)	Triton-
									Suc star	tion strainer ndard on	NA
*VFD ava	ailable upo	n reque	st						all	X Skids.	SVD01
For repla	cement ele	ement p	art numbers, plea	ase see	"Appendix	Section - Rep	olacement El	ements" of this catalog.	Par ava	ticle Counter not ilable for X7 or X8.	OXS

Appendix

OLF Compact Offline Filtration Systems

Formally Known as "KLC - Kidney Loop Compact Systems"

Features and Benefits

- Lower operating costs
- Extended element service life
- Extended fluid life
- Cleaner and more efficient systems
- Easy installation
- High dirt-holding capacity
- Requires low volume of oil

Applications

- Injection molding machines
- Machine tools
- Gear boxes
- Mobile equipment
- Filtration of fluids for intermittently operated hydraulic systems and test stands

Description

Schroeder's OFFLINE FILTRATION SYSTEMS - OLF are designed to filter highly contaminated hydraulic oils efficiently and cost effectively off-line. The OLF is designed for use on hydraulic systems with a reservoir of up to 1000 gallons and is perfect for retrofit situations when additional filtration is required. This compact filter is easy to install and ideal for gear boxes. They are supplied as ready-to-install off-line units complete with pump/motor assembly.

Specifications

Viscosity:	OLF-5/4 OLF-5 OLF-5/15	to 10,000 SUS to 700 SUS to 3,000 SUS
Operating Pressure:	45 psi (3 b	ar) max
Suction Pressure:	-6 psi to 8	7 psi max
Fluid Temperature:	32°F to 17	5°F (0°C to 80°C)
Ambient Temperature:	-4°F to 104	4°F (-20°C to 40°C)
Seals:	Buna N	
Maximum Flow Rate:	OLF-5/4 OLF-5 OLF-5/15	1.3 gpm 1.6 gpm 4.9 gpm
Fluids:	Standard n Consult fac	nineral oils, water/oil based fluids (min 40% oil in fluid), ctory for other fluids
Media:	Dimicron v	vith or without water removal capability - (2 μm, 20 μm)
Dirt Holding Capacity:	200g ISO N 185g ISO N	MTD (KLExx particulate elements) / MTD (KLEAxx water elements)
Water Retention:	Approxima	tely 0.5 quarts (0.5 liters)
Beta Ratio:	βx > 1000	
Maximum ΔP:	45 psi (3 b	ar)
Connections with Pump/Motor:	OLF-5/4 OLF-5 OLF-5/15	1 5/16"-12 SAE Female Straight Thread 3/4"-16 SAE Female Straight Thread 1 5/16"-12 SAE Female Straight Thread
Weight:	OLF-5/4 OLF-5 OLF-5/15	24.3 lbs (11.0 kg) 15.5 lbs (7.0 kg) 24.3 lbs (11.0 kg)

ote: SAE connections when using supplied adapters; BSPP connections when supplied adapters are not used. Housing drain standard on all models.

	Offli	no Filtrat	tion (Systems		ompact	
				ystems			000
			Formal	ly Known as "KLC - K	idney Loop	Compact Systems" CS 19	939
OLF-5/4 C)LF-5/15	0	LF-5	P		CSI-C	-11
		67 (44) 5.35 (1) (136) 00.28 2) 00.28	Ī			HY-TRA	X®
			7.36 (187)	429 (3.5bar)		RE	SA
			(160)		M)	C	SM
	S Max P			S		F	CU
			б		<u>}</u>	IV	ICS
							AS
						S	MU
						C	TU
			291 (74) 1.46 (37)		¥₩∓ +© +	E	РК
						Trou	ble
						Check P	lus
			11.89 (302)			HMG25	500
	(320)		9.96 (253)			HMG40	000
					7	ET-10	0-6
			<u> </u>			ł	ITB
				Metric dime	ensions in ().	RF	SA
How to Build a Va	alid Model Number	for a Schroeder	OLF:			Model Number HFS	BC
OIF-5		BOX 6 BOX 1	BOX 8			Selection HFS	-15
Example: NOTE: One op	tion per box					MFD	BC
BOX 1 BOX 2 B	OX 3 BOX 4 BOX 5	BOX 6 BOX 7	BOX 8			MFS, N	IFD
OLF-5 – S – 1	20 – K – KLEO2	2 – E – 12	=	OLF-5S-120-K-KLE02	2-E-12	HY-TRA	X®
В	OX 1	BOX 2		BOX 3		Retrotit Syst	em
OLE E Series	eries	Pump Typ	oe (standard)	Power Consumpt	tion	MFD-	
OLF-5 = Series	5 (1.6 gpm)	3 = varie rump	(Stanuaru)	120 = 12000 101 all OLF-3		INIE2-	HV
	15(19 anm)	Toploader wi	th Motor	200 - 200W for all $24VDC$	-		
OLF-5/4 = Series	15 (4.9 gpm) 15 (1.3 gpm)	Toploader wi TV = <i>(available for</i>	th Motor OLF-5/15 &	200 = 200W for all 24VDC 370 = 370W for all Series	5/15 & 5/4	AMS, AI	MD
OLF-5/4 = Series OLFCM-5/15 = With F	15 (4.9 gpm) 15 (1.3 gpm) luid Condition Monitoring	Toploader wi TV = (available for OLFCM-5/15	th Motor OLF-5/15 & only)	200 = 200W for all 24VDC 370 = 370W for all Series without pump/moto	5/15 & 5/4 pr	AMS, AI	MD FS
OLF-5/4 = Series OLFCM-5/15 = With F	15 (4.9 gpm) 15 (1.3 gpm) Iuid Condition Monitoring	Toploader wi TV = (available for OLFCM-5/15) E = Flow control (series 5 only)	th Motor OLF-5/15 & only) valve	$200 = 200W \text{ for all } 24VDC$ $370 = 370W \text{ for all Series}$ $Z = \frac{\text{without pump/moto}}{(\text{series 5 only})}$	5/15 & 5/4 pr	AMS, AI	MD FS 1FS
OLF-5/4 = Series OLFCM-5/15 = With F BOX 4	15 (4.9 gpm) 15 (1.3 gpm) luid Condition Monitoring BOX !	Toploader wi TV = (available for OLFCM-5/15) E = Flow control (series 5 only)	th Motor OLF-5/15 & only) valve)	$200 = 200W \text{ for all } 24VDC$ $370 = 370W \text{ for all Series}$ $Z = \frac{\text{without pump/moto}}{(\text{series 5 only})}$ BOX 6	5/15 & 5/4 or	AMS, AI AN KLS, K	MD FS MFS (LD
OLF-5/4 = Series OLFCM-5/15 = With F BOX 4 Voltage	15 (4.9 gpm) 15 (1.3 gpm) Iuid Condition Monitoring BOX 9 Elemen	Toploader wi TV = (available for OLFCM-5/15) E = Flow control (series 5 only) ont	th Motor OLF-5/15 & only) valve)	200 = 200W for all 24VDC 370 = 370W for all Series Z = without pump/moto (series 5 only) BOX 6 Clogging Indicator	5/15 & 5/4 pr	AMS, AI AN KLS, K M	MD FS IFS (LD CO
OLF-5/4 = Series OLFCM-5/15 = With F BOX 4 Voltage $K = \frac{115V \text{ single}}{\text{phase}}$	15 (4.9 gpm) 15 (1.3 gpm) Iuid Condition Monitoring BOX 5 Elemen KLE02 = 2 micron	Toploader wi TV = (available for OLFCM-5/15) E = Flow control (series 5 only) ont	th Motor OLF-5/15 & only) valve) E = S	$200 = 200W \text{ for all } 24VDC$ $370 = 370W \text{ for all Series}$ $Z = \frac{\text{without pump/moto}}{(\text{series 5 only})}$ BOX 6 Clogging Indicator tandard gauge (series 5 & 5/4 only)	5/15 & 5/4 or VM2BM.1 (series	AMS, AI AN KLS, K M AKS, A	MD FS MFS (LD CO KD
OLF-5/4 = Series OLFCM-5/15 = With F BOX 4 Voltage $K = \frac{115V \text{ single}}{\text{phase}}$ M = 220V single	15 (4.9 gpm) 15 (1.3 gpm) Iuid Condition Monitoring BOX Elemen KLE02 = 2 micron KLE05 = 5 micron KLE10 = 10 micron	Toploader wi TV = (available for OLFCM-5/15) E = Flow control (series 5 only)	th Motor OLF-5/15 & only) valve () E = S ¹ BM = D	$200 = 200W \text{ for all } 24VDC$ $370 = 370W \text{ for all Series}$ $Z = \frac{\text{without pump/moto}}{(\text{series 5 only})}$ BOX 6 Clogging Indicator tandard gauge (series 5 & 5/4 only) ifferential visual	5/15 & 5/4 pr VM2BM.1 (series 5/15 & 5/4 only)	AMS, AI AN KLS, K M AKS, A LSN, LSA, L	MD FS AFS CD CO KD SW
$OLF-5/4 = Series$ $OLFCM-5/15 = With F$ $BOX 4$ $Voltage$ $K = \frac{115V \text{ single}}{phase}$ $M = \frac{220V \text{ single}}{phase}$	15 (4.9 gpm) 15 (1.3 gpm) Iuid Condition Monitoring BOX ! Elemen KLE02 = 2 micron KLE05 = 5 micron KLE10 = 10 micron KLE20 = 20 micron	Toploader wi TV = (available for OLFCM-5/15) E = Flow control (series 5 only) ont	th Motor OLF-5/15 & only) valve) E = S ¹ BM = D C = D	$200 = 200W \text{ for all } 24VDC$ $370 = 370W \text{ for all Series}$ $Z = \frac{\text{without pump/moto}}{(\text{series 5 only})}$ BOX 6 Clogging Indicator tandard gauge (series 5 & 5/4 only) ifferential visual ifferential electrical	5/15 & 5/4 or VM2BM.1 (series 5/15 & 5/4 only) VM2C.0 (series 5/15 & 5/4 only)	AMS, AI AN KLS, K M AKS, A LSN, LSA, L X Ser	MD FS MFS (LD CO KD SW ies
$OLF-5/4 = Series$ $OLFCM-5/15 = With F$ $BOX 4$ $Voltage$ $K = \frac{115V \text{ single}}{\text{phase}}$ $M = \frac{220V \text{ single}}{\text{phase}}$ $N = 440V 3 \text{ phase}$ $T = 12VDC$	15 (4.9 gpm) 15 (1.3 gpm) luid Condition Monitoring BOX : Eleme KLE02 = 2 micron KLE05 = 5 micron KLE10 = 10 micron KLE20 = 20 micron KLEA02 = 2 micron	Toploader wi TV = (available for OLFCM-5/15 E = Flow control (series 5 only) on with water removal	th Motor OLF-5/15 & only) valve) $E = S^{T}$ BM = D C = D D = D	$200 = 200W \text{ for all } 24VDC$ $370 = 370W \text{ for all Series}$ $Z = \frac{\text{without pump/moto}}{(\text{series 5 only})}$ BOX 6 Clogging Indicator tandard gauge (series 5 & 5/4 only) ifferential visual ifferential electrical ifferential electrical	5/15 & 5/4 pr VM2BM.1 (series 5/15 & 5/4 only) VM2C.0 (series 5/15 & 5/4 only) VM2C.0L (series 5/15 & 5/4	AMS, AI AN KLS, K M AKS, A LSN, LSA, L X Ser OLF Comp	MD FS MFS (LD CO KD SW ies act
$OLF-5/4 = Series$ $OLFCM-5/15 = With F$ $BOX 4$ $Voltage$ $K = \frac{115V single}{phase}$ $M = \frac{220V single}{phase}$ $N = 440V 3 phase$ $T = 12VDC$ $U = 24VDC$	15 (4.9 gpm) 15 (1.3 gpm) luid Condition Monitoring BOX Eleme KLE02 = 2 micron KLE05 = 5 micron KLE10 = 10 micron KLE20 = 20 micron KLEA02 = 2 micron w KLEA20 = 20 micron	Toploader wi TV = (available for OLFCM-5/15) E = Flow control (series 5 only) ont with water removal with water removal	th Motor OLF-5/15 & only) valve) E = S ¹ BM = D C = D D = D	$200 = 200W \text{ for all } 24VDC$ $370 = 370W \text{ for all Series}$ $Z = \frac{\text{without pump/moto}}{(\text{series 5 only})}$ BOX 6 Clogging Indicator tandard gauge (series 5 & 5/4 only) ifferential visual ifferential electrical ifferential electrical/visual	5/15 & 5/4 or VM2BM.1 (series 5/15 & 5/4 only) VM2C.0 (series 5/15 & 5/4 only) VM2C.0L (series 5/15 & 5/4 only)	AMS, AI AM KLS, K M AKS, A LSN, LSA, L X Ser OLF Comp	MD FS MFS (LD CO KD SW ies act DLF
$OLF-5/4 = Series$ $OLFCM-5/15 = With F$ $BOX 4$ $Voltage$ $K = \frac{115V single}{phase}$ $M = \frac{220V single}{phase}$ $N = 440V 3 phase$ $T = 12VDC$ $U = 24VDC$	15 (4.9 gpm) 15 (1.3 gpm) luid Condition Monitoring BOX : Eleme KLE02 = 2 micron KLE05 = 5 micron KLE10 = 10 micron KLE20 = 20 micron KLEA02 = 2 micron KLEA02 = 20 micron	Toploader wi TV = (available for OLFCM-5/15) E = Flow control (series 5 only) ont with water removal with water removal	th Motor OLF-5/15 & only) valve y $E = S^{T}$ BM = D C = D D = D $D4 = D^{T}$	$200 = 200W \text{ for all } 24VDC$ $370 = 370W \text{ for all Series}$ $Z = \frac{\text{without pump/moto}}{(\text{series 5 only})}$ BOX 6 Clogging Indicator Candard gauge (series 5 & 5/4 only) ifferential visual ifferential electrical ifferential electrical/visual ifferential electrical/visual ifferential electrical/visual	5/15 & 5/4 pr VM2BM.1 (series 5/15 & 5/4 only) VM2C.0 (series 5/15 & 5/4 only) VM2C.0L (series 5/15 & 5/4 only)	AMS, A AM KLS, K AKS, A LSN, LSA, L X Ser OLF Comp (C	MD FS MFS (LD CO KD SW ies act DLF F-P
OLF-5/4 = Series OLFCM-5/15 = With F BOX 4 $K = \frac{115V \text{ single}}{\text{phase}}$ $M = \frac{220V \text{ single}}{\text{phase}}$ N = 440V 3 phase T = 12VDC U = 24VDC	15 (4.9 gpm) 15 (1.3 gpm) luid Condition Monitoring BOX ! Eleme KLE02 = 2 micron KLE05 = 5 micron KLE10 = 10 micron KLE20 = 20 micron KLEA02 = 2 micron KLEA02 = 20 micron	Toploader wi TV = (available for OLFCM-5/15) E = Flow control (series 5 only) ont with water removal with water removal	th Motor OLF-5/15 & only) valve) $E = S^{1}$ BM = D C = D D = D $D4 = \frac{D}{W}$ DL110 = D	$200 = 200W \text{ for all } 24VDC$ $370 = 370W \text{ for all Series}$ $Z = \frac{\text{without pump/moto}}{(\text{series 5 only})}$ BOX 6 Clogging Indicator tandard gauge (series 5 & 5/4 only) ifferential visual ifferential electrical ifferential electrical/visual ifferential electrical/visual ifferential electrical/visual ifferential electrical/visual ifferential electrical/visual	5/15 & 5/4 or VM2BM.1 (series 5/15 & 5/4 only) VM2C.0 (series 5/15 & 5/4 only) VM2C.0L (series 5/15 & 5/4 only)	AMS, AI AM KLS, K AKS, A LSN, LSA, L X Ser OLF Comp (ULF Comp	MD FS (LD CO KD SW ies act DLF F-P TM
OLF-5/4 = Series OLFCM-5/15 = With F BOX 4 Voltage $K = \frac{115V \text{ single}}{\text{phase}}$ $M = \frac{220V \text{ single}}{\text{phase}}$ N = 440V 3 phase T = 12VDC U = 24VDC	15 (4.9 gpm) 15 (1.3 gpm) luid Condition Monitoring BOX : Eleme KLE02 = 2 micron KLE05 = 5 micron KLE10 = 10 micron KLE20 = 20 micron KLEA02 = 2 micron KLEA02 = 20 micron	Toploader wi TV = (available for OLFCM-5/15) E = Flow control (series 5 only) only with water removal with water removal with water removal	th Motor OLF-5/15 & only) valve () $E = S^{T}$ BM = D C = D D = D D4 = D DL110 = D M BOX8	$200 = 200W \text{ for all } 24VDC$ $370 = 370W \text{ for all Series}$ $Z = \frac{\text{without pump/moto}}{(\text{series 5 only})}$ BOX 6 Clogging Indicator Candard gauge (series 5 & 5/4 only) ifferential electrical ifferential electrical/visual	5/15 & 5/4 pr VM2BM.1 (series 5/15 & 5/4 only) VM2C.0 (series 5/15 & 5/4 only) VM2C.0L (series 5/15 & 5/4 only)	AMS, A AMS, A KLS, K AKS, A LSN, LSA, L X Ser OLF Comp C OL Nx VE	MD FS (LD (CO (KD SW ies act DLF F-P TM U-F
$OLF-5/4 = Series$ $OLFCM-5/15 = With F$ $BOX 4$ $Voltage$ $K = \frac{115V single}{phase}$ $M = \frac{220V single}{phase}$ $N = 440V 3 phase$ $T = 12VDC$ $U = 24VDC$ $BOX 7$ $BOX 7$	15 (4.9 gpm) 15 (1.3 gpm) luid Condition Monitoring BOX : Eleme KLE02 = 2 micron KLE05 = 5 micron KLE10 = 10 micron KLE20 = 20 micron KLEA02 = 2 micron KLEA02 = 2 micron	Toploader with TV = (available for OLFCM-5/15) E = Flow control (series 5 only) ont with water removal with water removal with water removal	th Motor OLF-5/15 & only) valve) $E = S^{1}$ BM = D C = D D = D $D4 = \frac{D}{W}$ $DL110 = \frac{D}{W}$ BOX8 ementary Det	$200 = 200W \text{ for all } 24VDC$ $370 = 370W \text{ for all Series}$ $Z = \frac{\text{without pump/moto}}{(\text{series 5 only})}$ BOX 6 Clogging Indicator tandard gauge (series 5 & 5/4 only) ifferential electrical ifferential electrical ifferential electrical/visual	5/15 & 5/4 or VM2BM.1 (series 5/15 & 5/4 only) VM2C.0 (series 5/15 & 5/4 only) VM2C.0L (series 5/15 & 5/4 only)	AMS, AI AM KLS, K AKS, A LSN, LSA, L X Ser OLF Comp (U Nx VE	MD FS (LD (CO KD (KD SW ies act DLF F-P TM U-F MU
$OLF-5/4 = Series$ $OLFCM-5/15 = With F$ $BOX 4$ $Voltage$ $K = \frac{115V single}{phase}$ $M = \frac{220V single}{phase}$ $N = 440V 3 phase$ $T = 12VDC$ $U = 24VDC$ $BOX 7$ $BOX 7$ $Mechanical Connections$	15 (4.9 gpm) 15 (1.3 gpm) luid Condition Monitoring BOX : Eleme KLE02 = 2 micron KLE05 = 5 micron KLE10 = 10 micron KLE20 = 20 micron KLEA02 = 2 micron KLEA02 = 2 micron KLEA02 = 20 micron	Toploader wi TV = (available for OLFCM-5/15) E = Flow control (series 5 only) ont with water removal with water removal with water removal Supple = with Contamination	th Motor OLF-5/15 & only) valve () $E = S^{2}$ BM = D C = D D = D $D4 = D^{2}$ $DL110 = D^{2}$ W BOX8 ementary Det	$200 = 200W \text{ for all } 24VDC$ $370 = 370W \text{ for all Series}$ $Z = \frac{\text{without pump/moto}}{(\text{series 5 only})}$ BOX 6 Clogging Indicator tandard gauge (series 5 & 5/4 only) ifferential visual ifferential electrical ifferential electrical/visual ifferential electrical/visua	5/15 & 5/4 5/15 & 5/4 or VM2BM.1 (series 5/15 & 5/4 only) VM2C.0 (series 5/15 & 5/4 only) VM2C.0L (series 5/15 & 5/4 only)	AMS, A AMS, A KLS, K M AKS, A LSN, LSA, L X Ser OLF Comp (OL Nx VE VI	MD FS (LD (CO (KD SW ies act DLF F-P TM U-F MU (XU
$OLF-5/4 = Series$ $OLFCM-5/15 = With F$ $BOX 4$ $Voltage$ $K = \frac{115V single}{phase}$ $M = \frac{220V single}{phase}$ $N = 440V 3 phase$ $T = 12VDC$ $U = 24VDC$ $BOX 7$ $BOX 7$ $Mechanical Connections$	15 (4.9 gpm) 15 (1.3 gpm) luid Condition Monitoring BOX : Eleme KLE02 = 2 micron KLE05 = 5 micron KLE10 = 10 micror KLE20 = 20 micron KLEA02 = 2 micron KLEA02 = 20 micron KLEA20 = 20 micron C	Toploader wi TV = (available for $OLFCM-5/15E = Flow control (series 5 only) ont with water removal with water removal with water removal Supple = with Contamination = with Contamination$	th Motor OLF-5/15 & only) valve P $E = S^{1}$ BM = D C = D D = D $D4 = \frac{D}{W}$ $DL110 = \frac{D}{W}$ BOX8 ementary Detter inSensor CS 1	$200 = 200W \text{ for all } 24VDC$ $370 = 370W \text{ for all Series}$ $Z = \frac{\text{without pump/moto}}{(\text{series 5 only})}$ BOX 6 Clogging Indicator tandard gauge (series 5 & 5/4 only) ifferential electrical ifferential electrical ifferential electrical/visual ifferential electrical/v	5/15 & 5/4 or VM2BM.1 (series 5/15 & 5/4 only) VM2C.0 (series 5/15 & 5/4 only) VM2C.0L (series 5/15 & 5/4 only)	AMS, A AMS, A KLS, K AKS, A LSN, LSA, L X Ser OLF Comp (U Nx VE VI I Trito	MD FS (LD (CO KD SW ies act DLF F-P TM U-F MU (XU n-A
$OLF-5/4 = Series$ $OLFCM-5/15 = With F$ $BOX 4$ $K = \frac{115V single}{phase}$ $M = \frac{220V single}{phase}$ $N = 440V 3 phase$ $T = 12VDC$ $U = 24VDC$ $BOX 7$ $BOX 7$ $Mechanical Connections$	15 (4.9 gpm) 15 (1.3 gpm) luid Condition Monitoring BOX : Eleme KLE02 = 2 micron KLE05 = 5 micron KLE10 = 10 micror KLE20 = 20 micror KLEA02 = 2 micron v KLEA20 = 20 micron KLEA20 = 20 micron	Toploader wi TV = (available for OLFCM-5/15) E = Flow control (series 5 only) ont with water removal with water removal with water removal Supple = with Contamination = with Contamination = with Contamination	th Motor OLF-5/15 & only) valve () $E = S^{1}$ BM = D C = D D = D $D4 = D^{1}$ $DL110 = D^{1}$ W BOX8 ementary Det nSensor CS 1 nSensor CS 1 nSensor CS 1	$200 = 200W \text{ for all } 24VDC$ $370 = 370W \text{ for all Series}$ $Z = \frac{\text{without pump/moto}}{(\text{series 5 only})}$ BOX 6 Clogging Indicator tandard gauge (series 5 & 5/4 only) ifferential visual ifferential electrical ifferential electrical/visual ifferential electrical/visua	5/15 & 5/4 5/15 & 5/4 or VM2BM.1 (series 5/15 & 5/4 only) VM2C.0 (series 5/15 & 5/4 only) VM2C.0L (series 5/15 & 5/4 only) 00	AMS, A AMS, A KLS, K M AKS, A LSN, LSA, L X Ser OLF Comp (OL Nx VE VI I Trito Trito	MD FS (LD CO KD SW ies act DLF F-P TM U-F MU XU n-A n-E
OLF-5/4 = Series OLFCM-5/15 = With F BOX 4 Voltage $K = \frac{115V \text{ single}}{\text{phase}}$ $M = \frac{220V \text{ single}}{\text{phase}}$ N = 440V 3 phase T = 12VDC U = 24VDC BOX 7 Mechanical Connections 12 = SAE Connections	15 (4.9 gpm) 15 (1.3 gpm) luid Condition Monitoring BOX : Eleme KLE02 = 2 micron KLE05 = 5 micron KLE10 = 10 micror KLE20 = 20 micror KLEA02 = 2 micron KLEA02 = 2 micron KLEA20 = 20 micron (standard) C CD AC	Toploader wi TV = (available for OLFCM-5/15 E = Flow control (series 5 only ont with water removal with water removal with water removal with Contamination = with Contamination	th Motor OLF-5/15 & only) valve () $E = S^{1}$ BM = D C = D D = D $D4 = D^{1}$ $DL110 = D^{1}$ BOX8 ementary Detter in Sensor CS 1 in Sensor CS 1 () () () () () () () () () ()	$200 = 200W \text{ for all } 24VDC$ $370 = 370W \text{ for all Series}$ $Z = \frac{\text{without pump/moto}}{(\text{series 5 only})}$ BOX 6 Clogging Indicator tandard gauge (series 5 & 5/4 only) ifferential visual ifferential electrical ifferential electrical/visual iffarential electrical/visual ifferential electrical/visual ifferential electrical/visual iffarential electrical/visua	5/15 & 5/4 pr VM2BM.1 (series 5/15 & 5/4 only) VM2C.0 (series 5/15 & 5/4 only) VM2C.0L (series 5/15 & 5/4 only)	AMS, A AMS, A KLS, K KLS, K AKS, A LSN, LSA, L X Ser OLF Comp (OL Nx VE VI Trito Trito	MD FS MFS (LD CO KD CO KD SW ies act DLF F-P TM U-F MU (XU n-A n-E IAV

Appendix

OLF Offline Filtration Systems

Formally Known as "MTS - Membrane Technology Systems"

5 - 20 gpm <u>19-75 L/min</u> <u>85 psi</u> 6.0 bar

Features and Benefits

- Effectively cleans hydraulic and cleaning fluids, lubricating oils, and coolants
- Provides excellent dirt removal efficiency, even in single pass filtration
- Available with pump and motor or can be utilized as an individual filter
- Included framework makes unit ready to install
- Easy to retrofit existing system
- Test points provided on all models
- Housing drain standard on all units

Applications

- Off-line filtration for hydraulic systems and test stands
- Bypass filtration
- Flushing and filling applications
- In-line auxiliary filtration

Description

Element

The OLF from Schroeder is an off-line filtration system that features unique membrane elements constructed of stacked disks where dirt holding capacity is measured in pounds instead of grams, drastically reducing the amount of time required to clean up highly contaminated fluids. The abundant media surface area afforded by the stacked disk construction combined with the highly efficient membrane filtration give the OLF its very impressive dirt retention characteristics. The OLF can hold up to four filter elements and can be supplied as a stand-alone filter or with a pump and motor.

Offline Filtration Systems OL

Formally Known as "MTS - Membrane Technology Systems"

	OLF-15	OLF-30	OLF-45	OLF-60	Specifications CSI-C	2-11
Number of Elements:	1	2	3	4	HY-TR.	AX®
Contamination Retention Capacity:	1.1 lbs	2.2 lbs	3.3 lbs	4.4 lbs	R	BSA
	(500 g)	(1000 g)	(1500 g)	(2000 g)		CSM
Filter Efficiency:	β _x > 1000		FCU			
Permissible Δp Across the Element:	72.5 psi (5.0 bar)					
Material of Filter Housing:	Stainless Steel	Stainless Steel	Stainless Steel	Stainless Steel		NICS
Capacity of Pressure Vessel:	5.25 gal (19.87 L)	10.50 gal (39.75 L)	15.75 gal (59.62 L)	20.5 gal (77.60 L)		AS
Max Operating Pressure	85 psi (6.0 bar)	2	SMU			
Filter Housing:						сτι
Material of Seals-Housing (standard):	Buna N	Buna N	Buna N	Buna N		FPK
Fluid Temperature:	15° to 175°F (-9.44° to 79.44°C)	Tro	uble			
Technical Details for Motor-Pumps Units:	5 gpm (18.93 L/min)	10 gpm (37.85 L/min)	15 gpm (56.78 L/min)	20 gpm (75.71 L/min)	Check	Plus
Operating Pressure of the Pump:	65 nsi (4 48 har)	65 nsi (4 48 har)	65 nsi (1 18 har)	65 nsi (4.48 har)	HMG2	2500
Gear Pump (SUS)	75 to 5000	75 to 5000	75 to 5000	75 to 5000	HMG4	1000
Weight Element	6.6 lbs (2.00 kg)	12.2 lbc(5.00 kg)	10.9 lbs (9.09 kg)	26.4 lbs (11.07 kg)	ET-10	00-6
Weight Element	0.0 IDS (2.99 kg)	13.2 IDS(3.99 Kg)	19.0 IDS (0.90 Ky)	20.4 IDS (11.97 Kg)		нтр
weight Housing:	25 IDS (11.34 Kg)	33 IDS (14.97 Kg)	53 IDS (24.04 Kg)	62 IDS (28.12 Kg)		
Material of Seals in Pumps (standard):	Buna N	Buna N	Buna N	Buna N	R	FSA
Housing Connections: (Units without motor pump groups)	1 5/16-12UN (SAE	16)			HFS	S-BC

Element Pressure Drop

HFS-15 MFD-BC MFS, MFD HY-TRAX[®] Retrofit System MFD-MV MFS-HV AMS, AMD FS AMFS KLS, KLD KLS, KLD AKS, AKD LSN, LSA, LSW X Series OLF Compact

OLF-P	
NxTM	
VEU-F	
VMU	
IXU	
Triton-A	
Triton-E	
NAV	
SVD01	
OXS	
Appendix	

OLF Offline Filtration Systems

Formally Known as "MTS - Membrane Technology Systems"

Sizing Off-line Filtration

The following calculations will help to approximate the attainable system cleanliness level when applying off-line filtration.

Step 1: Select the approximate contamination ingression rate from the chart. Quantitative investigations have yielded the following approximate figures.

	Contamination Ingression (µg/gal) Surroundings				
Type of System	Clean	Normal	Polluted		
Closed circuit	1	3	5		
Injection molding machine	3	6	9		
Standard hydraulic system	6	9	12		
Lubrication system	8	11	14		
Mobile equipment	10	13	16		
Heavy industrial press	14	18	22		
Flushing test equipment	42	60	78		

Step 2: Make the correction required for off-line filtration.

The contamination input selected above must be multiplied by the factor: Main System Flow Rate / Desired Off-line Flow Rate

Note: Main system flow rate must be corrected for cycle time. For example, if the flow rate is 500 gpm, but only runs for 20% of the system cycle, the main system flow rate would be 100 gpm. (500 gpm X 20%)

This yields the expression:

Contamination Factor = Contamination Input (µg/gal) x Main System Flow Rate (gpm) Desired Off-line Flow Rate (gpm)

Calculate the contamination factor using this expression.

Step 3: Determine the attainable cleanliness level. Locate the calculated contamination factor on the y-axis of the attached graph. Go to the right to find the intersection point on the curve corresponding to the desired absolute filter micron rating. Read the resulting attainable cleanliness level on the x-axis. (In case of dynamic flow through the off-line filter, the attainable cleanliness level will be 2 to 3 times worse than indicated by the graph.)

Off-line Filtration Sizing Example:

Type of System: Heavy industrial press

Surroundings: Normal

Main System Flow Rate: 150 gpm

Desired Off-line Flow Rate: 20 gpm (OLF-60)

- **Step 1:** Using this criterion select the approximate contamination ingression rate from the chart above. This yields a contamination input of 18 µg/gal based on a heavy industrial press with normal surroundings.
- **Step 2:** Make the correction required for off-line filtration. Contamination Factor = $18 \mu g/gal \times 150 gpm / 20 gpm = 135$
- Step 3: Determine the approximate attainable cleanliness level for each micron rating using the attached graph. If the attainable cleanliness level is not acceptable, the desired off-line flow rate should be increased. The approximate attainable levels for this example are as follows.

2 μm - ISO 17/15/12

 $20 \ \mu m$ - Between ISO 20/18/15 and ISO 21/19/16

Offline Filtration Systems OL

Formally Known as "MTS - Membrane Technology Systems"

	OX 4 BOX 5	BOX 6 BOX	7 BOX 8		Selection	HY-TRAX®
xample: NOTE: One option per	box				Highlighted	RBSA
BOX 1 BOX 2 BOX 3 B	OX 4 BOX 5	BOX 6 BOX	7 BOX 8		product eligible for	CSM
OLF – 15 – 15 –	G – L60 – N1	5DM002 – E	-12 = OLF-	15/15-G-L60- 4002-E/12	Giner Menter 1	FCU
				1002-E/12		MCS
BOX 1		BOX 2	BOX 2 BOX 3			A
OLE = Stationary offline fi	lter	Size 15 – 1 element	15 = 5 gpm	must be \leq to size)		SMU
Stationary offline fi	Iter with integrated	30 = 2 elements	30 = 10 gpm	This code entry		CTU
contamination mor	nitoring sensors	$45 = 3 \text{ elements} 45 = 15 \text{ gpm} \qquad \qquad$		must be less than or equal to the		EPR
		60 = 4 elements	60 = 20 gpm	same size entry (15,30,45,60)		Trouble Check Plue
			Z = without pump			
BOX 4	BOX 5		BOX 6			HIVIG2500
Ритр Туре	Motor Voltage		Filter Elemen	t		ET 400 4
= Gear Pump	L60 = 115V, Single P	hase N15DM	002 = Dimicron® 2 μm	Absolute		E 1- 1 UU-6
= Without motor-pump	O60 = 460V, Three Pl	nase N15DM	010 = Dimicron® 10 μr 020 = Dimicron® 20 μr	m Absolute		HIE
L		N15DM	$D_2 = Dimicron \ge 20 \ \mu r$	m Absolute		KFSA
		it is built	Z = No filter element	nt supplied		HE2-BC
		L				HFS-15
BOX / Clogging Indicator			Model			
E = Standard gauge	12 =	SAE adapters (BSP	P connections are stan	dard)		IVIFS, IVIFL
M = Differential visual	VM2BM.1 V =	Viton [®] Seals (NBR s	seals are standard)		Re	etrofit System
C = Differential electrical	VM2C.0 MP =	Integrated TestPoir	nt for connection of FC	CU via Minimess Line		MFD-M\
D = Differential visual/electr	rical CD =	ContaminationSensor CS 1320 (with Display)				MFS-H\
	CS =	SMU1260	ISOF CS 1310 (WILHOUL	Display) with		AMS, AME
	ACD =	ContaminationSer	nsor CS 1320 and AS F	3000 (with Display)		FS
						AMFS
						KLS, KLC
						МСС
						AKS, AKC
					1	.SN, LSA, LSV
						X Serie:
						OLF Compac
						OLI
						OLF-F
						NxTN
						VEU-I
						VML
						ΙΧΙ
						Triton-A
						Triton-I
						NA
						SVD01

Offline Filtration Systems

Description

The OffLine Filter Pressure (OLFP) is a stationary offline filter and is used to remove oil aging products, water and solid particles from hydraulic and lubrication fluids.

Thanks to its compact construction, the OLFP is also ideally suited for use in even the smallest of installation spaces. The housings are pressure resistant up to 20 bar. Since the housing material is aluminium, the filters are also suitable for low-temperature applications.

The flow can be taken directly from the main flow through an orifice and the orifice determines the flow rate. The offline filters can also be equipped with a motor-pump unit and an inductive particle counter, as an option.

The Trimicron series of filter elements NxTMxxx have been specially developed for the combined removal of fine particles, water and oil aging products. The most modern filter materials with reliable separation characteristics and high contamination retention capacity are used for this purpose.

~										
•	n	^	~ 1		•	2	••	0	n	C
Э	U	C	LI		IL	α	LI	U		э.
-	r.	-		-		-		-		-

	OLFP 1	OLFP 3	OLFP 6
Operating Pressure:	Max. 363 psi (25 bar)	Max. 29	00 psi (20 bar)
Fluid Temp. Range:	-22° F t	o 176° F (-30° C to 80	D° C)
Max. Operating Viscosity:	1000 cSt		
Ambient Temp. Range:	-22° F t	o 176° F (-30° C to 80	О° С)
Survival Temp.:		-40° F (-40° C)	
Storage Temp.:	-40° F t	o 176° F (-40° C to 80	D° C)
Head Material:		Aluminum	
Bowl Material:	Aluminum		
Seals:		FPM/NBR	
Filter Housing Content:	-2.4 gal. (-9 liters)	-7.1 gal. (-27 liters)	-11 gal. (-43 liters)
Hydraulic Port (IN/OUT):	See table "Hyd	raulic Connections" o	on next page
Filter Element:	1 x N1TMXXX	1 x N3TMXXX	2 x N3TMXXX
Weight:	Approx. 46.3 lbs (21 kg)	Approx. 82 lbs (37 kg)	Approx. 90 lbs (41 kg)

130 SCHROEDER INDUSTRIES

Offline Filtration Systems OLF-P

CS 1939)
CSI-C-11	
HY-TRAX®	
RBSA	۱.
CSM	
FCU	
MCS	
As	
SMU	J
сти	J
ЕРК	
Trouble Check Plus	5
HMG2500)
HMG4000)
ET-100-6	5
нтв	3
RFSA	
HFS-BC	2
HFS-15	
MFD-BC	-
MFS, MFD	
HY-TRAX® Retrofit System) 1
MFD-MV	1
MFS-HV	
AMS, AMD)
FS	5
AMFS	5
KLS, KLD)
MCO)
AKS, AKD)
LSN, LSA, LSW	
X Series	5
OLF Compact	t
OLF	
OLF-F	
NXTM	
VEU-F	
VMU	
IXU Tuta A	
Iriton-A	۱.
	:
NAV	

OLF-P Offline Filtration Systems

Offline Filter System

How to Build a Valid Model Number for a Schroeder OLF-P:			
BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 6 BOX 7 BOX 8 BOX 9			
Example: NOTE: One option per box			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			

BOX 1	BOX 2		
Series	Size		
OLFP = Offline Filter - Pressure	1 = Filter size 1 (1 x filter element N1TM003 *)		
OLFPCM = Offline Filter - Pressure with Condition Monitoring (TCM)	3 = Filter size 3 (1 x filter element N3TM003 *)		
	6 = Filter size 6 (2 x filter element N3TM003 *)		

BOX 3	BOX 4	BOX 5
Flow Rate	Type of Pump	Motor
2 = 0.53 gpm (2 L/min)	O = with orifice	M = 230 V/50 Hz/1 Phase/0.37 kW
3 = 0.79 gpm (3 L/min)	G = gear pump	N = 400 V/50 Hz/3 Phase/0.37 kW
6 = 1.59 gpm (6 L/min)	Z = without	AB = 690 V/50 Hz/1 Phase/0.37 kW
Z = variable (without pump)		X = Other voltages
		N60, M60 = Operation at 60 Hz
		Z = Without electric motor

BOX 6	BOX 7	BOX 8	BOX 9
Contamination Monitoring	Element Type	Sealing Material	Clogging Indicator
M = TMS Metallic Sensor	TM = Trimicron	N = NBR	E = Standard, back-pressure indicator
A = TWS Water Sensor		F = FPM	B = Differential pressure indicator, visual (VM2BM x)
Z = Omit			C = Differential pressure indicator, electrical (VM2C.x)
			D3 = Differential pressure indicator, visual/electrical (VM2D.x)
			D38 = Differential pressure indicator, visual/electrical (VL x GW.0 /-V-113)

	CS 1939
Model Number	CSI-C-11
Selection	HY-TRAX®
	RBSA
	CSM
	FCU
	MCS
	AS
	SMU
	CTU
	ЕРК
	Trouble Check Plus
	HMG2500
	HMG4000
	ET-100-6
	НТВ
	RFSA
	HFS-BC
	HFS-15
	MFD-BC
	MFS, MFD
Ret	HY-TRAX® trofit System
	MFD-MV
	MFS-HV
	AMS, AMD
	FS
	AMFS
	KLS, KLD
	МСО
	AKS, AKD
L	SN, LSA, LSW
	A Series
(
	NxTM
	VEU-F
	VMU
	IXU

Triton-A Triton-E

NAV

SVD01

OXS

Appendix

Z = Omit

NxTM TriMicron Element Series

Features and Benefits

- Excellent filtration performance ($\beta_{5(c)} > 1000$)
- Low initial differential pressure
- High contamination retention capacity
- Fine particle contamination, water and oil aging products removed by depth filter material
- Broad range of fluid compatibility
- Simple element change

Applications

- Offline filtration in lubrication systems (e.g. in wind turbines)
- Offline filtration in hydraulic systems
- Transmission and hydraulic test rigs

Description

The filter elements in the TriMicron series have been specially developed for the combined filtration of fine solid particle contamination, water and oil-ageing products from hydraulic and lubrication oils in the bypass flow.

They are a combination of pleated and SpunSpray depth filter elements. The filter layers are produced using melt-blown technology (synthetic fibers).

Specifications

Model:	N1	N3
Contamination Retention Capacity ISOMTD at ΔP = 2.5 bar	~ 410 g	~ 410 g
Water Retention Capacity:	~ 680 ml	~ 2.1
Beta value β _{5(c)} @ 2 bar	> 1,0	000
Filtration Rating:	3 μ	Im
Differential Pressure at Starting Point:	< 0.1	bar
Permitted Fluid Temperature Range:	14 to 176 °F (-10 to 80 °C)
Storage Temperature Range:	41 to 104 °F	(5 to 40 °C)

134 SCHROEDER INDUSTRIES

TriMicron Element Series NxTM

w to Build a Valid Model Nu BOX 1 BOX 2 BOX 3 BO	mber for a Schroede	r NxTM TriMicron Element:	Model Number
N			Selection
mple: NOTE: One option per box			
	$\mathbf{N} = \mathbf{N1TM003} / \mathbf{N}$		FC
			MC
			A
BOX 1	BOX 2	BOX 3	SMI
Nominal Flow Rate	Element Type	Filtration Rating	T
Nervicel flow rate 11/min	The TriMicrop	(microns)	EP
Nominal flow rate 1 L/min		003 = 3	Troubl
			Check Plu
BOX 4			HMG250
Sealing Material			HMG400
- NBR			ET-100-
= FPM			HT
- 11 101			RFS
			HFS-E
			HFS-1
Element Differential Pressure N1	M E	lement Differential Pressure N3TM	MFD-B
	6.7		MFS, MF
8		0.11	HY-TRAX Retrofit Syste
0.11			MFD-M
	3 **		MFS-H
	5 to		AMS, AM
	62	0-31.000	
0*21	Livelan B.T	Q+1Limin	АМІ
	. 4		KLS, KL
e 200 400 400 800 Viscosity in rem/s*	1000 0	200 400 400 800 1000 Viscosity in mm/s*	мс
			AKS, AK
			LSN, LSA, LS
			X Seri
			OLF Compa
			0
			OLF
			NxT
			VEU
			VM
			IX
			Triton
			Triton
			NA
			SVDO
			0)

Appendix

Varnish Elimination Unit

Features and Benefits

- Removal of solid and gel-like oil aging products
- Increased operating reliability of the system as a result of fewer deposits in hydraulic valves
- Increased oil service life
- Available for existing and for new systems

Applications

- Turbine Lubrication Systems
- Plastic Injection Molding Machines
- Industrial Forges and Presses

Description

The service-friendly Varnish Elimination Unit (VEU) is used to prepare mineral oils and is particularly effective at removing oil aging products (varnish) from mineral oils. Varnish takes the form of oil-insoluble aging products which settle in the tank, in valves or in bearings. These can be filterable gels or solid paint-type deposits. The VEU series product is used in bypass flow. The removal of varnish is based on reducing the oil solubility for varnish with subsequent filtration using a combination of a heat exchanger with Dimicron[®] filter element technology.

Specifications	Flow Rate:	VEU-x-10=10 gpm (38 L/min) VEU-x-15=15 gpm (57 L/min)
	Fluid Viscosity:	75 to 2,000 SUS
	Permitted Operating Fluids:	Mineral-based
	Fluid Service Temperature:	VEU-x-10-: 32°F to 140°F (0°C to 60°C) VEU-x-15-: 32°F to 176°F (0°C to 80°C)
	Pump Operating Pressure:	87 psi (6 bar) max
	Differential Pressure Across Elements:	72.5 psi (5 bar) max
	Permissible Inlet Pressure Range:	-5.8 psi to 7 psi (-0.4 bar to 0.48 bar)
	INLET Port Connection:	VEU-x-10-: 1-5/8 x 12UN - Male VEU-x-15-: 1-7/8-12UN - Male
	OUTLET Port Connection:	1-5/16 x 12UN - Male
	Water INLET port connection (VEU-Wonly)	1-1/2 x NPT - Male
	Water OUTLET port connection (VEU-Wonly)	1-1/2 x NPT - Male
	Supply Voltage:	460V AC / 60Hz / 3 Ph. 575V AC / 60Hz / 3 Ph.
	Seal Material:	FKM (Viton [®])
	Ambient Temperature Range:	32°F to 104°F (0°C to 40°C)
	Storage Temperature Range:	0°F to 140°F (-18°C to 60°C)
	Relative Humidity:	0% to 80%, non-condensing
	Weight:	VEU-x-10-: 1,100 lbs. (499 kg.) VEU-x-15-: 1,150 lbs. (522 kg.)

Sizing + Element Selection	Sizing Chart		Model Code	Micron Rating	Part No.
	Tank Volume (gallons)	VEU-F Model	N15DM002	2	1251590
	150 to 1200	VEU-x-10-	N15DM005	5	3252552
	225 to 2000	VEU-x-15-	N15DM010	10	3115180

136 SCHROEDER INDUSTRIES

Varnish Elimination Unit

VEU

VEU-F

VMU Varnish Mitigation Unit 1/4 Series

Features and Benefits

- Removal of solid or gel-type oil aging products
- Operating reliability of the system is increased because there are fewer deposits in hydraulic components
- Increases oil service life
- Available as a complete unit for service, and as a modular system for retrofitting existing bypass circuit or for OEM

Description

The user-friendly Varnish Mitigation Unit is designed to condition mineral oils. The VMU is particularly effective at removing oil aging products (varnish) from mineral oils.

Varnish takes the form of insoluble oil aging products which settle in reservoirs, valves and bearings. These can be non-filterable gels or solid paint-type deposits.

The VMU series offline filtration system removes varnish through adsorption on an active filter element surface.

Specifications

Hydraulic Data

MPC Values Achievable	< 20
Flow Rate:	VMU 1 ≈ 0.58 gpm (≈ 2.2 l/min) VMU 4 ≈ 2.4 gpm (≈ 8.9 l/min)
Fluid Temperature:	86 to 140 °F (30 to 60 °C)
Max. Operating Pressure:	87 psi (6 bar)
Permissible Suction Pressure at Suction Inlet IN:	2.9 to 14.5 psi (-0.2 to 1 bar)
Viscosity Range:	78 to 370 SUS (15 to 80 cSt)
Permissible Operating Fluid:	Mineral-based fluids
Connections IN / OUT:	1/2"-20 male JIC / 1/2-20 female o-ring boss
Pump Type:	Gear
Electrical Data	
Power Supply Voltage:	See ordering details
Power Consumption:	0.25 to 0.6 kW / 16 Amps
Ambient Conditions	
Operating Temperature Range:	32 to 104 °F (0 to 40 °C)
Storage Remperature Range	32 to 140 °F (0 to 60 °C)
Relative Humidity:	0 to 80%, non-condensing
Protection Class to DIN 40050:	IP 55
General Data	
Length of Electrical Connection Cable:	5′ (1.5 m)
Sealing Material:	FKM (Viton®)
Sound Level at 1m:	< 80 dB(A)
Weight* (empty):	VMU 1 = 155 lbs (70 kg), VMU 4 = 660 lbs (300 kg)
Fluid Cleanliness Required:	ISO 19/17/14 (ISO 4406:1999) 9A/9B/9C (SAE AS4059)
Varnish Mitigation Unit 1/4 Series

Dimensions **Dimensions** VMU1 Series 0.5" NPT eartirice Hole 6.5" MUIC NPT Drain Plug ratic Shutdo **Check Plus** Dimensions VMU4 Series 0.5* M.R. 0.5" NPT Dran Plug atic Shutch **Retrofit System** Dimensions in inches (mm). How to Build a Valid Model Number for a Schroeder VEU: Model BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 6 BOX 7 BOX 8 BOX 8 Number KLS, KLD VMU Selection Example: NOTE: One option per box BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 6 BOX 7 BOX 8 BOX 9 =VMU4MGO-G05BMG05-PKZ VMU 4 Μ G 0 G05 ΒM G05 PKZ **X** Series BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 Series Series Type of Pump **Power Supply Voltage** Туре 1x Varnish Mitigation element M = Mobile G = Gear Pump F = 230 V, 60 Hz, 3 Ph VMU 1 = NAVME ≈ 0.5 gpm (2.2 l/min) Without 115 V, 60 Hz, 1 Ph S = Stationary Z = K = 4x Varnish Mitigation elements 4 =NAVME ≈ 2.5 gpm (8.9 l/min) 460 V, 60 Hz, 3 Ph 0 = (standard) BOX 6 BOX 7 BOX 8 Prefilter **Clogging Indicator** Postfilter VMU $G05 = With 5\mu m$ element BM = differential pressure indicator - visual (VM2BM.1) G05 = With 5µm element 10 = With $10\mu m$ element C = differential pressure indicator – electrical (VM2C.0) 10 = With 10µm element BOX 9 **Supplementary Details** PKZ = with on-off switch and overload protective motor switch (standard) FA1 = with on-off switch, overload protective motor switch and cut-out when filter clogged (requires neutral wire in power supply) with on-off switch, overload protective motor switch and cut-out when filter clogged (does not require neutral wire in power FA2 =supply)

SCHROEDER INDUSTRIES 139

IXU Ion eXchange Unit

.5 -2.5 gpm 1.9-9.5 L/min

Features and Benefits

- Longer oil change intervals
- Increase in the lifetime of operating fluids and components
- Higher machine availability
- Reduction in functional problems, e.g. with servo valves
- Easy to service unit through - Component replacement without tools - Filter elements can be removed with the cover pointing "upward"
- Ideal to combine with type SVD Dewatering Units
- Available to service as complete unit, modular system for retrofitting existing bypass circuits or for OEM
- Visual Dirt Alarm[®] provided on all models
- Sold in North America only.

Applications

- Power plants
- Steel industry
- Other applications with ester-based, flame resistant fluids

Description

This easy to service ion exchange unit of the IXU series is used for conditioning flame resistant, HFD-R-based hydraulic and lubrication fluids. They effectively remove acidic products of decomposition caused by hydrolysis and/or oxidation of the fluid. The units are applied to hydraulic and lubrication oil tanks up to approximately 5,300 gallons (20,000 L) with volumetric flow of up to approximately 2.4 gpm (9 l/min) in the bypass flow. Mobile or stationary IXU are available. The IXU uses Ion eXchange Element (IXE) filled with ion exchange resin.

NOTES: No connection lines included

Ion eXchange Unit IXU

- OPTIONAL CART

P

IXU-4

[]0 []0

S

C5 1000
CS 1939
CSI-C-11
HY-TRAX®
RBSA
CSM
FCU
MCS
AS
SMU
СТИ
ЕРК
Trouble
Check Plus
HMG2500
HMG4000
ET-100-6
НТВ
RFSA
HFS-BC
HFS-15
MFD-BC
MFS, MFD
HY-TRAX [®] Retrofit System
MFD-MV
MFS-HV
AMS, AMD
FS
AMFS
KLS, KLD
МСО
AKS, AKD
LSN, LSA, LSW
X Series
OLF Compact
OLF
OLF-P
NxTM
VEU-F
VMU
IXU
Triton-A
Triton-E
NAV
SVD01

142 SCHROEDER INDUSTRIES

Triton Dehydration Station[®] U.S. Patent 8491785

Triton-A	
----------	--

2.0 gpm

Description

Principle of

Operation

Retrofit System

7.6 L/min

Features and Benefits

- Patented mass transfer technology uses ambient air to optimize and control dewatering rates
- High Dewatering Rates and particulate removal in one system
- Simple Controls; RUN/DRAIN modes
- Reduce fluid recycling cost
- No expensive vacuum pump to service and replace
- Compact, efficient footprint
- Remove free and dissolved water
- Highly effective in low and high humidity environments

Water contamination in hydraulic systems can severely reduce the life of hydraulic systems and fluids. The Triton Dehydration Station[®] is designed to eliminate 100% of free and up to 90% of dissolved water from small reservoirs, barrels, and gear boxes. Using a patented mass transfer process, the Triton Dehydration Station[®] efficiently removes water and particulate contamination quickly in all environments. A proprietary design reduces aeration of free and entrained gases of returned fluid. The unit was designed to be extremely portable using the optional cart to access tight areas.

The Triton Dehydration Station[®] uses patented mass transfer dewatering technology. Ambient air is conditioned to increase its water holding capability before injecting to the reaction chamber. Fluid is equally distributed and cascaded down through reticulated media and the conditioned air stream. Water is transformed to water vapor and is expelled from the unit as a moist air stream. The relative humidity of the incoming fluid is continually monitored by an integral AS1000 and displayed real-time on the control panel.

45.2"(H) x 36.7"(W) x 20.3"(D)	Specifications Amb
295 lbs (134 kg)	FS
1" SAE	AMFS
1" SAE	KLS, KLD
120 gallons/hour or 2.0 gpm	Мсо
-5.8 psig (-0.4 bar) to 32 psia (2.2 bar)	AKS, AKD
75 psig (5 bar)	ISN ISA ISW
100° F to 150°F (40°C to 65.5°C)	V Series
70- 1000 SUS (13 - 215 cSt), Explosion-proof: 500 SUS maximum	X Series
110 VAC, 60 Hz, 12 amp	OLF Compact
< 50 ppm	OLF
Standard, 0-99% Range	OLF-P
Reaction Vessel: Stainless Steel Seals: Viton®	NxTM
NEMA 2	VEU-F
	45.2"(H) x 36.7"(W) x 20.3"(D) 295 lbs (134 kg) 1" SAE 1" SAE 120 gallons/hour or 2.0 gpm -5.8 psig (-0.4 bar) to 32 psia (2.2 bar) 75 psig (5 bar) 100° F to 150°F (40°C to 65.5°C) 70- 1000 SUS (13 - 215 cSt), Explosion-proof: 500 SUS maximum 110 VAC, 60 Hz, 12 amp < 50 ppm Standard, 0-99% Range Reaction Vessel: Stainless Steel Seals: Viton®

Media	Filter Rating	DHC (gm)	Element	Triton-A
Z1	β 4.2 _(C) ≥1000	55	Performance	Triton
Z3	β 4.8 _(C) ≥1000	57		Inton-c
Z5	β 6.3 _(C) ≥1000	62		NAV
Z10	β 10 _(C) ≥1000	52		SVD01
Z25	β 24 _(C) ≥1000	48		OXS

SCHROEDER	INDUSTRIES	143

Triton Dehydration Station[®]

Triton Dehydration Station[®]

optimize and control dewatering rates

Patented mass transfer technology uses ambient air to

High Dewatering Rates and particulate removal in one

Simple Controls - maintenance, operation and troubleshooting instructions are available in the Human Machine Interface (HMI) Touch Screen

No expensive vacuum pump to service and replace

Highly effective in low and high humidity elements

Part of Schroeder Industries Energy Savings Initiative

Features and Benefits

Reduce fluid recycling cost

Compact, efficient footprint

Remove free and dissolved water

system

Water contamination in hydraulic systems can severely reduce the life of hydraulic systems and fluids.

The Triton Dehydration Station[®] uses patented mass transfer dewatering technology. Ambient air is

conditioned to increase its water holding capability before injecting to the reaction chamber. Fluid is

equally distributed and cascaded down through reticulated media and the conditioned air stream. Water is transformed to water vapor and is expelled from the unit as moist air/stream. The relative humidity of the incoming fluid is continually monitored by an integral TestMate[®] Water Sensor (TWS) and displayed

The Triton Dehydration Station[®] is designed to eliminate 100% of free and up to 90% of dissolved water. The Triton-E can handle large quantities of oil from sizeable hydraulic reservoirs, lubricating circuits, totes and large gear boxes due to the high flow rate of the unit. Using a patented mass transfer process, the Triton Dehydration Station[®] efficiently removes water and particulate contamination quickly in all environments. A proprietary design reduces aeration of free and entrained gases of returned fluid. The unit is designed to be extremely portable using either the integrated lifting lugs located on each corner of the

cart or the optional wheeled version.

U.S. Patent 8491785

CS 1000 CS 1939 CSI-C-11 HY-TRAX® 56.78 L/min S6.78 L/min CSM FCU MCS AS SMU CTU EPK Trouble Check Plus HMG2500 HMG4000 ET-10-6 HTB RFSA HFS-8C HFS-15 Principle of MFD-8C MFS, MFD

Retrofit System

real-time on the control panel in percent saturation. **Specifications** Dimensions: 32"W x 59"L x 70.25" H Dry Mass: 1000 lbs (453 kg) Inlet Connections: 1-1/2" MJIC Outlet Connections: 1-1/2" MJIC Flow Rate: 15 gpm Standard, (other options available - see Box 2 on the next page) Inlet Pressure: Atmospheric Outlet Pressure: to 125 psi (8.62 bar) Fluid Service Temperature: 50° F to 175°F (10°C to 79°C) Fluid Viscosity: 70-2000 SUS (13 -539 cSt), 2500 with heater **X** Series Power Supply: 460 V/3/60 Hz, 13 amps 460 V/3/60 Hz, 28 amps w/heater 575 V/3/60 Hz, 10.5 amps 575 V/3/60 Hz, 23 amps w/heater Attainable Water Content: < 50 ppm Relative Humidity Display: Standard, 0-99% Range Construction: Base Frame: Carbon Steel Vessel: Stainless Steel Seals: Viton® Protection Class: NEMA 2

Iriton-E	Element	DHC (gm)	Filter Rating	Media	DHC (gm)	Filter Rating	Media	
NAV	Performance	52	β 10 _(C) ≥1000	Z10	55	β 4.2 _(C) ≥1000	Z1	
SVD01		48	β 24 _(C) ≥1000	Z25	57	β 4.8 _(C) ≥1000	Z3	
OXS					62	ß 6.3 _(C) ≥1000	Z5	
Appendix						(-)		

Triton Dehydration Station[®]

U.S. Patent 8491785

Metric dimensions in ().

146 SCHROEDER INDUSTRIES

North American Vacuum Dehydrator

Features and Benefits Water Sensor standard on all units to show percent saturation Removes 100% of free and over 90% of dissolved water, as well as 100% of free and over 90% of dissolved gases Maintenance, operating, troubleshooting instructions are in HMI (touchscreen) Automatic mode enables user-defined system shutdowns ■ Use of a low maintenance, dry running claw vacuum pump helps to avoid any dangerous, chemically reactive by-products Part of Schroeder Industries Energy Savings Initiative

The North American Vacuum Dehydrator (NAV) uses vacuum dehydrating technology to remove both free and dissolved water, and gases, from oil. In addition to water and gas, the NAV also removes solid contaminants from the oil with the use of highly efficient filter elements installed on the unit. The NAV is designed for use with larger applications, such as the conditioning of oil in larger hydraulic and lube reservoirs.

Dimensions:	39" W x 76" L x 74" H (99.06 cm x 193.04 cm x 187.96 cm)
Dry Mass:	1990 lbs (903 kg)
Inlet Connections:	2" NPT
Outlet Connections:	1 ½" NPT
Flow Rate:	30 gpm (114 L/min)
Inlet Pressure:	22 in. Hg - 10 psi
Outlet Pressure:	110 psi (7.6 bar)
Fluid Service Temperature:	39°F to 170°F (3.8°C to 77°C)
Operating Temperature:	39°F to 105°F (3.8°C to 40.6°C)
Fluid Viscosity:	150-3280 SUS (23-700 cSt)
Power Supply:	460V or 575V
Attainable Water Content:	<10ppm
Relative Humidity Display:	Standard, 0 - 99%
Constructions:	Base Frame: Carbon Steel Vessel: Carbon Steel Seals: Viton
Protection Class:	NEMA 4

	CS 1000
	CS 1939
20 anm	CSI-C-11
	HY-TRAX®
113.6 L/MIN	RBSA
	CSM
	FCU
	MCS
	AS
	SMU
	СТИ
	EPK
	Trouble Check Plus
	HMG2500
	HMG4000
	ET-100-6
	НТВ
Description	RFSA
	HFS-BC
	HFS-15
	MFD-BC
	MFS, MFD
Ret	HY-TRAX® rofit System
specifications	MFD-MV
	MFS-HV
	AMS, AMD
	FS
	AMFS
	KLS, KLD
	МСО
	AKS, AKD
LS	N, LSA, LSW
	X Series
0	LF Compact
	OLF
	OLF-P
	NXTM
	VEU-F
	VMU
	IXU Triton A
	Triton-F
	NAV
	NAV

NA\

NAV

North American Vacuum Dehydrator

Vacuum Dehydrator SVD01

- **Features and Benefits**
- Small, compact and easy-to-use unit with Siemens LOGO controller as well as control panel for quick use during service calls or emergencies
- Reliable and convenient for fixed and permanent use due to extensive monitoring functions
- Optional integrated heater to increase dewatering performance, especially for cold or high viscosity oils
- Optional integrated water content and particle measurement technology with continuous display of the measurements, storage of the values and control of the unit
- Very low residual water content, gas content and particle contamination result in longer oil change intervals, improved life expectancy of components, higher machine availability and as a result, a reduction in the Life Cycle Cost (LCC)

The Schroeder Vacuum dehydrator SVD01 designed for dewatering, degassing and filtering hydraulic and lubrication fluids. It operates on the principle of vacuum dewatering to eliminate free and dissolved water as well as free and dissolved gases. By using Schroeder Dimicron filter technology which has a high contamination retention capacity and filtration efficiency, the SVD01 is extremely cost effective.

Perfect for service work thanks to its compact and mobile design. In the stationary version it provides perfect continuous protection for applications where operating fluids require optimal care, in which valuable bio-oils or fire-resistant fluids are used, or where water frequently gets into the system.

Flow Rate at 60 Hz:	~ 1.6 gpm (~6 l/min)	Specifications	пгэ-тэ
Permitted Fluids**:	Fluids compatible with NBR or FKM (See fluid compatibility chart)		MFD-BC
Sealing Material:	NBR or FKM (FPM, Viton [®])		MFS, MFD
Filter Clogging Indicator:	Differential pressure switch with cut-off function when filter is clogged		HY-TRAX® Retrofit System
Type of Vacuum Pump:	Rotary vane vacuum pump		MFD-MV
Pump Type for Filing and Draining:	Gear pump		
Operating Pressure (outlet):	0 to 116 psi (0 to 8 bar)		
Permitted Pressure at Suction Port (without suction hose):	-2.9 to 14.5 psi (-0.2 to 1 bar)		AMS, AMD FS
Permitted Pressure Viscosity Range**:	78 to 1623 SUS (15 to 350 mm2/cSt) – w/o integrated heater 78 to 2550 SUS (15 to 550 mm2/cSt) – with integrated heater		AMFS
Permitted Viscosity Range for Particle Measurement:	15 to 200 mm²/s – with measuring equipment ACS, AC		KLS, KLD MCO
Fluid Temperature Range**:	50 to 176° F (10 to 80° C)	AKS, A	
Ambient Temperature:	32 to 104 °F (0 to 40 °C)		LSN, LSA, LSW
Storage Temperature Range**:	32 to 104 °F (0 to 40 °C)		X Series
Relative Ambient Humidity**:	Maximum 90%, non-condensing		OLF Compact
Electrical power consumption <i>(without heater)</i> / required external fuse*:	\approx 1 kW / 16 A for circuit breakers with trip characteristics type C	NOTES:	OLF OLF-P
Heating output (optional)	Max. 2.4 kW (depending on the nominal voltage, see Model Code)	specifications	NxTM
Protection Class:	IP 54	given, equipment- dependent	VEU-F
Length of Power Cable/Plus:	10 m / CEE (depending on the nominal voltage, see Model Code)	**For other fluids,	VMU
Length of Connection Hoses:	197" (5 m) (mobile version only)	viscosities or	IXU
Material of Hoses:	see Model Code	please contact us	Triton-A
Hydraulic Connections	see table "Connection Summary"	*** Units are	Triton-E
Woight When Empty	$265 \text{ h} \approx 120 \text{ kg}$	not suitable for	NAV
weight when Empty:	~20.5 lb. ~ 120 kg	"Onload" operation	SVD01
Achievable Residual Water Content:	< 100 ppm — nyaraulic & lubricating oils < 50 ppm — turbine oils (ISO VG 32/46) < 10 ppm — trapsformer oils ***	(transformer in operation and	OXS
	SCHROEDER INDUSTRIES 14	connected to grid).	Appendix

1.6 gpm

6 L/min

Description

SVD01 Vacuum Dehydrator

Dimensions in inches (millimeters).

For replacement element part numbers, please see "Appendix Section - Replacement Elements" of this catalog.

OXiStop OXS LID Series

Features and Benefits

- Reduced oil volume up to a factor of 10
- Oil service life is increased as a result of the reduction by up to 80% in air content and reduced dirt ingress
- Higher process speeds
- Higher efficiency
- Reduced noise and wear due to less cavitation
- Ideal for humid and dusty environments
- Reduced costs due to similar size, fewer installation costs, less oil required and easier transport
- Longer component service life, less service downtime of hydraulic system components

Schroeder's OXiStop is a tank solution for hydraulic systems with an integrated, hydraulically driven degassing and dewatering unit. The integrated membrane prevents direct contact with the ambient air. This means the tank can be calculated for the differential operating volume actually required, thus reducing its size. The pump flow rate is no longer important for the tank calculation.

Very low gas and water content is achieved in the fluid. Thanks to the membrane which keeps the fluid "vacuum packed", it is also possible to install the OXiStop in extremely dusty or humid environments. The OXS LID series is installed in a custom-designed tank and contains all necessary components

The OXS LID comes in seven standard sizes, with differential operating volumes ranging from 8 to 32 gallons. Contamination Sensor option available.

The size of the OXiStop (based on required differential operating volume) can be calculated from the sum of the actual volume differences of cylinders, accumulators, hoses etc. that may be present in a system. In addition, allowances must be made for the volume required for thermal expansion in the oil and for possible continuous oil losses. This volume (except for accumulator) should be doubled as a safety margin.

Rule of thumb:

Sum of total accumulator volume + 2x sum of volume difference for cylinders, hoses, temperature expansion, etc. = OXiStop differential operating volume.

Also, it is important to check if the total oil volume in the system is required to return to the tank when maintenance work is carried out.

- OXiStop LID according to model code
- Membrane bag holder
- Integrated membrane
- MiniOx degassing unit
- KLC5 offline filtration unit with optional TestMate[®] Contamination Sensor (TCM)
- TestMate[®] Water Sensor (TWS-D)
- HNS electronic level sensor

- Breather filter and piping for individual components
- Gasket (interface to tank)
- Operating and maintenance instructions
- Instructions for tank installation

OXS	CS 1000
	CS 1939
	CSI-C-11
	HY-TRAX®
	RBSA
	CSM
	FCU
	MCS
	AS
	SMU
	CTU
	EPK
	Trouble Check Plus
	HMG2500
	HMG4000
Description	ET-100-6
	HTB
	RFSA
	HFS-BC
	HFS-15
	MFD-BC
	MFS, MFD
	Retrofit System
	MFD-MV
	MFS-HV
	AMS, AMD
	FS
	MCO
	AKS, AKD
What's	LSN, LSA, LSW
Included	X Series
	OLF Compact
	OLF
	OLF-P
	NxTM
	VEU-F
	VMU
	IXU
	Triton-A
	Triton-E
	NAV
	SVD01

Specifications	OXS 30LID OX	5 45LID OXS 7	OLID OXS 150LID	OXS 250LID	OXS 325LID	OXS 500LID
	Differential Operating Volume: 8 gal. 11	8 gal. 18.5	gal. 39.5 gal.	66 gal.	86 gal.	132 gal.
	Typical Degassing Rate*:	up to 2.3 g	allons per hour			
	Max. Viscosity:	up to 1,500	SUS			
	Max. Fluid Flow Rate IN/OUT:	238 gpm				
	Fluid Temperature:	50°F to 175	5°F (10°C to +80°	C)		
	Ambient Temperature**:	-4°F to 104	°F (-20°C to 40°C)		
	Storage Temperature:	32°F to 104	°F (0°C to 40°C)			
	Relative Humidity:	0 - 80%, n	on-condensing			
	Filtration Unit:	KLC05				
	Filtration Unit Filter Element:	KLE02				
	Contamination Retention Capacity:	36 psi (2.5	bar)			
	Pump Type:	Vane Pump				
	Optimal Sampling Pump Flow Rate:	1.9 gpm (7	5 L/min)			
	Filtration Unit Operating Pressure:	145 psi (10	bar)			
	Clogging Indicator:	Visual Diffe	rential Pressure In	dicator		
	Electrical Connection:	See Model	Code			
	Power Consumption:	370 W				
	IP Rating per DIN 40050:	IP54				
	Permitted Fluids**:	Mineral Bas	ed Hydraulic Fluid	ls		
	Sealing Material**:	NBR				
	Membrane Material**:	PUR				
	Typical Lifetime, Membrane:	≈ 6 years w ≈ 2 years w	ith 104°F - 140°F ith 175°F fluid ter	fluid temper mperature	ature	

* Typical values for ISO VG 46, 40 °C when saturated with gas. The degassing rate depends on the total gas content in the oil, the oil temperature, and especially the oil viscosity. The degassing rate reduces as viscosity increases.

** Others on request

OXiStop OXS LID Series OXS

		-	-	_			-	
OXS 30LID	615	480	500	362	395	395	5	74
OXS 45LID	615	480	610	472	395	395	5	74
OXS 70LID	615	480	820	682	395	395	5	74
OXS 150LID	1015	680	610	472	795	595	5	-27
OXS 250LID	1015	680	820	682	795	595	5	-27
OXS 325LID	1415	880	607	472	1195	795	8	-127
OXS 500LID	1415	880	817	682	1195	795	8	-127

Item	Component
1	OXS LID with membrane bag holder
2	Directional control valve
3	Valve and connection block
4	KLC5 filtration unit
5	Clogging indicator on KLC5
6	Check valve
7	MOX degassing unit
8	EDS electronic pressure sensor or vacuum gauge (optional)
9	Filling port
10	Drain port
11	Pressure test point
12	HNS electronic level sensor
13	Port for visual tank fluid level indicator
14	Vent
15	Air filter
16	TCM Contamination Sensor (optional)
17	TWS-D Water Sensor (optional)
18	Sight glass

19

18

Item

2

5

3

Component

Tank membrane

KLC5 offline filtration n

Valve and connection block

For replacement element part numbers, please see "Appendix Section - Replacement Elements" of this catalog.

CS 1939
CSI-C-11
HY-TRAX®
RBSA
CSM
FCU
MCS
AS
SMU
СТИ
ЕРК
Trouble Check Plus
HMG2500
HMG4000
ET-100-6
НТВ
RFSA
HFS-BC
HFS-15
MFD-BC
MFS, MFD
HY-TRAX® Retrofit System
MFD-MV
MFS-HV
AMS, AMD
FS
AMFS
KLS, KLD
МСО
AKS, AKD
LSN, LSA, LSW
A Series
OLF COMPACT
OLF-P
NxTM
VEU-F
VMU
IXU
Triton-A
Triton-E
NAV
SVD01
OXS

Appendix

OXS OXiStop OXS LID Series

ample: NOTE: 6 BOX 1 BOX 2 OXS -30LII Nodel 30LII TOXS 30LII OXS -30LII SOX 1 45LII TOUR 30LII 250LII 325LII 325LII 500LII BOX 5 80X 5 Return Line F 7	BOX 3 BOX 4 BOX 5 D O O O O O O O O O O O O O O O O O O O	BOX 6 BC Z - Z .8 gal. .5 gal. .5 gal. i gal. i gal. 2 gal.	BOX 3 BOX 3 Voltage O = 460 V/60Hz/3-Pha: N = 400 V/50Hz/3-Pha:	BOX 4 BOX 4 Sealing Material 1 = NBR seals, PUR membrane	
80X 1 Aodel 30LII 45LII 70LII 150LII 250LII 325LII 500LII 80X 5 Return Line F 7 = Omit	BOX 2 Size D = Operating volume 8 g D = Operating volume 111 D = Operating volume 180 D = Operating volume 390 D = Operating volume 66 D = Operating volume 86 D = Operating volume 130	gal. .8 gal. 3.5 gal. 5 gal. 5 gal. 5 gal. 2 gal.	BOX 3 Voltage O = 460 V/60Hz/3-Pha: N = 400 V/50Hz/3-Pha:	BOX 4 Sealing Material 1 = NBR seals, PUR membrane se	
BOX 5 Return Line F	 O = Operating volume 8 g D = Operating volume 11. D = Operating volume 18. D = Operating volume 39. D = Operating volume 66 D = Operating volume 86 D = Operating volume 13. 	gal. .8 gal. 5 gal. 5 gal. 6 gal. 6 gal. 2 gal.	O = 460 V/60Hz/3-Pha: N = 400 V/50Hz/3-Pha:	se <u>1 = NBR seals, PUR membrane</u>	
BOX 5 Return Line F 7 = Omit					
	ilter Plate Heat E Z = Or	BOX Exchanger - mit	6 ⊦ Pump Motor Group		
(a a	BOX 7		Lavel/Tar	BOX 8	
1 = Pressure	e Gauge		2 = Electronic Level Sensor with integrated temperature sensor		
2 = Electro	nic Pressure Sensor (EDS)				
Measure Z = Omit WP = Water Contair	BOX 9 ring Equipment Sensor (TWS-D) + nination Sensor (TCM)				

SCHROEDER INDUSTRIES 155	Appendix
	OXS
	SVD01
	NAV
	Triton-E
	Triton-A
	VEU-F
	NxTM
	OLF-P
	OLF
	OLF Compact
	X Series
	LSN, LSA, LSW
	AKS, AKD
	MCO
	FS
	AMS, AMD
	MFS-HV
	MFD-MV
	Retrofit System
This page is intentionally left blank	HY-TRAX®
	MES MED
	HFS-15 MED_PC
	HFS-BC
	RFSA
	НТВ
	ET-100-6
	HMG4000
	HMG2500
	Check Plus
	Trouble
	ЕРК
	СТИ
	AS
	MCS
	FCU
	CSM
	RBSA
	HY-TRAX®
	CSI-C-11
	CS 1939
	CS 1000

• This page is intentionally left blank

Replacement Element

Used in FS Series, MFS & MFD Series, AKS & AKD Series, KLS & KLD Series and X-Skid - Standard Capacity Series

Pressure	ure 9" Elements		18" Elements				
Elements	Model Code	P/N	Description	M	odel ode	P/N	Description
	KW	7630767	Water Removal Element	K	KW	7628654	Water Removal Element
	KWV	7628759	Water Removal Element (viton)	K	<wv< td=""><td>7615323</td><td>Water Removal Element</td></wv<>	7615323	Water Removal Element
	KZ1	7630768	1 Micron Element				(viton)
	KZ1V	7615685	1 Micron Element (viton)	K	KZ1	7615325	1 Micron Element
	KZ3	7628664	3 Micron Element	Kk	KZ1V	7615337	1 Micron Element (viton)
	KZ3V	7615706	3 Micron Element (viton)	K	KZ3	7628657	3 Micron Element
	KZ5	7628345	5 Micron Element	Kk	KZ3V	7628760	3 Micron Element (viton)
	KZ5V	7628665	5 Micron Element (viton)	K	KZ5	7628658	5 Micron Element
	KZ10	7627464	10 Micron Element	Kk	KZ5V	7615359	5 Micron Element (viton)
	KZ10V	7628662	10 Micron Element (viton)	K١	<z10< td=""><td>7628655</td><td>10 Micron Element</td></z10<>	7628655	10 Micron Element
	KZ25	7628663	25 Micron Element	KK	Z10V	7628656	10 Micron Element
	KZ25V	7615694	25 Micron Element (viton)	K	<z25< td=""><td>7615339</td><td>25 Micron Element</td></z25<>	7615339	25 Micron Element
		27″ E	lements	КК	Z25V	7615346	25 Micron Element
	Model Code	P/N	Description	Used	in MF	D-BC Filte	(viton)
	27KW	7629168	Water Removal Element	obeu		9" El	ements
	27KWV	7603050	Water Removal Element (viton)	M	odel ode	P/N	Description
	27KZ1	7628576	1 Micron Element	9	GW	7604551	Water Removal Element
	27KZ1V	7603061	1 Micron Element (viton)	9	GZ3	7604564	3 Micron Element
	27KZ3	7628577	3 Micron Element	9	GZ5	7604569	5 Micron Element
	27KZ3V	7629172	3 Micron Element (viton)	90	GZ10	7604553	10 Micron Element
	27KZ5	7628578	5 Micron Element	90	GZ25	7604559	25 Micron Element
	27KZ5V	7603077	5 Micron Element (viton)	L			
	27KZ10	7628575	10 Micron Element				
	27KZ10V	7603056	10 Micron Element (viton)				
	27KZ25	7629170	25 Micron Element				
	27KZ25V	7603065	25 Micron Element (viton)				

Used in X-Skid - High Capacity Replacement Elements

	16" Elemen	ts		39" Elemen	ts
Model Code	P/N	Description	Model Code	P/N	Description
16QPML-Z1B	Contact Factory	1 Micron Element	39QPML-Z1B	7603313	1 Micron Element
16QPML-Z1V	7602695	1 Micron Element (viton)	39QPML-Z1V	7603314	1 Micron Element (viton)
16QPML-Z3B	Contact Factory	3 Micron Element	39QPML-Z3B	Contact Factory	3 Micron Element
16QPML-Z3V	7602698	3 Micron Element (viton)	39QPML-Z3V	7603320	3 Micron Element (viton)
16QPML-Z5B	Contact Factory	5 Micron Element	39QPML-Z5B	Contact Factory	5 Micron Element
16QPML-Z5V	7602700	5 Micron Element (viton)	39QPML-Z5V	7603323	5 Micron Element (viton)
16QPML-Z10B	Contact Factory	10 Micron Element	39QPML-Z10B	7632409	10 Micron Element
16QPML-Z10V	7602692	10 Micron Element (viton)	39QPML-Z10V	7603309	10 Micron Element (viton)
16QPML-Z25B	Contact Factory	25 Micron Element	39QPML-Z25B	Contact Factory	25 Micron Element
16QPML-Z25V	7602697	25 Micron Element (viton)	39QPML-Z25V	7603318	25 Micron Element (viton)

Replacement Element Appendix

Used in X-Skid - Coreless Replacement Elements

	16" Element	s	39" Elements			
Model Code	P/N	Description	Model	P/N	Description	Eleme
16QCLQFZ1	Contact Factory	1 Micron Element	Code		Beschption	
16QCLQFZ1V	Contact Factory	1 Micron Element	39QCLQFZ1	Contact Factory	1 Micron Element	
	-	(viton)	39QCLQFZ1V	7628372	1 Micron Element	
16QCLQFZ3	Contact Factory	3 Micron Element			(viton)	
16QCLQFZ3V	7628349	3 Micron Element	39QCLQFZ3	Contact Factory	3 Micron Element	
		(viton)	39QCLQFZ3V	7628374	3 Micron Element	
16QCLQFZ5	Contact Factory	5 Micron Element			(viton)	
16QCLQFZ5V	Contact Factory	5 Micron Element	39QCLQFZ5	Contact Factory	5 Micron Element	
		(viton)	39QCLQFZ5V	7628375	5 Micron Element	
16QCLQFZ10	Contact Factory	10 Micron Element			(viton)	
16QCLQFZ10V	7628348	10 Micron Element	39QCLQFZ10	Contact Factory	10 Micron Element	
		(viton)	39QCLQFZ10V	7628732	10 Micron Element	
16QCLQFZ25	Contact Factory	25 Micron Element			(viton)	
16QCLQFZ25V	7628475	25 Micron Element	39QCLQFZ25	Contact Factory	25 Micron Element	
		(viton)	39QCLQFZ25V	7628373	25 Micron Element (viton)	

Dimicron[®] Elements - Used in MTS Series and SVD Series

Model Code	P/N	Description			
MTE02	Contact Factory	2 Micron Element			
MTE05	Contact Factory	5 Micron Element			
MTE10	Contact Factory	10 Micron Element			
MTE20	7617620	20 Micron Element			
MTE30	7617621	30 Micron Element			

*Note - Be sure to order the correct number of elements: MTS1 = 1, MTS2 = 2, MTS3 = 3, MTS4 = 4.

Handy Filter Systems Replacement Elements **Dimicron Elements** -

_	, ,		
	Model Code	P/N	Description
ſ	M3	7616070	3 Micron Element
	M10	7631073	10 Micron Element
	MZ3	7627545	3 Micron Element
	MZ10	7628733	10 Micron Element

AMFS Unit (and all carts/skids using 18"/27" GeoSeal[®]) Replacement Elements

Model Code	P/N	Description
KKWV	7615323	Water Removal Element (viton)
KKGZ3V	7615301	3 Micron Element (viton)
KKGZ5V	7615304	5 Micron Element (viton)
KKGZ10V	7630721	10 Micron Element (viton)
27KWV	7603050	Water Removal Element (viton)
27KGZ3V	Contact Factory	3 Micron Element (viton)
27KGZ5V	7603035	5 Micron Element (viton)
27KGZ10V	7603028	10 Micron Element (viton)

Used in KLC and OxiStop				
Model Code	P/N	Description		
KLE02	7632742	2 Micron Element		
KLE05	Contact Factory	5 Micron Element		
KLE10	7632741	10 Micron Element		
KLE20	7632739	20 Micron Element		
KLEA02	7632743	2 Micron Element w/Water Removal		
KLEA20	7632740	20 Micron Element		

Ion eXchange Unit Replacement **Elements**

Model	P/N	Description
Code		Description
IXE36-5.5	3348961	Standard Ion Exchange Resin Element
KKZ5V	7615359	5 Micron Pre/ Post Element
KKZ10V	7628656	10 Micron Pre/ Post Element

	CSI-C-11
2	HY-TRAX®
ts	RBSA
	ТІМ
	TSU
	TMU
	FCU 1000 Series
	ТРМ
	TMS
	TWS-C/D
	SMU
	СТИ
	EPK
	Trouble Check Plus
	HMG2500
	HMG4000
	ET-100-6
	НТВ
	RFSA
	HFS-BC
	MFD-BC
	MFS, MFD
	HY-TRAX® Retrofit System
	MFD-MV
	MFS-HV
	AMS, AMD
	FS
	AMFS
	KLS, KLD
	МСО
	AKS, AKD
	LSN, LSA, LSW
	X Series
	KLC
	MTS
	OLF-P
	NxTM
	IXU
	Inton-A
	Iriton-E

w/Water Removal

Appendix

Pressure Elements

Triton-A Unit Replacement Elements

Model Code	P/N	Description
9VZ1V	7604651	1 Micron Element
9VZ3V	7604664	3 Micron Element
9VZ5V	7604673	5 Micron Element
9VZ10V	7628743	10 Micron Element
9VZ25V	7604656	25 Micron Element
PAB3P3N.75AS	7633710	Breather (cart version)
ABF-S40	7627888	Breather (shroud version)

Triton-E Unit Replacement Elements

Model Code	P/N	Description
KKGZ1V	7604651	1 Micron Element
KKGZ3V	7604664	3 Micron Element
KKGZ5V	7604673	5 Micron Element
KKGZ10V	7628743	10 Micron Element
KKGZ25V	7604656	25 Micron Element
MBF-3-M-P20	7627888	Air Breather Element

LSN, LSA, LSW Unit Replacement

Replacement Element Part Numbers						
Size	Зµ	5µ	10µ	20µ		
RLD250	1307539	2201054	1305954	Contact Factory		
RLD400	1313317	2201055	1304608	Contact Factory		
LPF160	7620903	7620906	7620895	Contact Factory		
LPF240	7620931	7631656	7620924	Contact Factory		
LF660	7621004	7621008	7620996	Contact Factory		

Contamination Class

Contamination Types

Contamination Types All photos x 48 magnification

1 scale mark = 45 µm

Particle Type:

Mainly rust; white particles; additives

Effect:

- Rapid oil aging
- Breakdowns in pumps, valves
- Wear and tear

Particle Type:

Oil aging products

Effect:

- Blocking of filters
- Silting-up system

Particle Type:

Metal

Effect:

- Breakdowns in pumps, valves
- Wearing of seals
- Leakage
- Oil aging

Particle Type:

Particles in bronze, brass and copper

Effect:

- Breakdowns in pumps, valves
- Oil aging
- Leakage
- Wearing of seals

Contamination Types Appendix

Particle Type:

Gel-type residue from filter element

Effect:

- Blocking of filter
- Silting-up

Particle Type:

Silicates due to lack of, or inadequate, air breather filter

Effect:

- Heavy wear on components
- Breakdowns in pumps, valves
- Wearing of seals

Particle Type:

Colored particles (red/brown) Synthetic particles (blue)

Effect:

Breakdowns in pumps, valves Wearing of seals

Particle Type:

Fibers due to initial contamination, open tank, cleaning cloths, etc.

Effect:

- Blocking of nozzles
- Leaking from seat valves

	CSI-C-11
Contaminatio	n HY-TRAX®
Types	RBSA
All photos	TIM
x 48 magnificatio	n TSU
1 scale mark = 45 μm	TMU
	FCU 1000 Series
	TPM
	TMS
	TWS-C/D
	SMU
	CIU
	The blue
	Check Plus
	HMG2500
	HMG4000
	ET-100-6
	НТВ
	RFSA
	HFS-BC
	MFD-BC
	MFS, MFD
	HY-TRAX® Retrofit System
	MFD-MV
	MFS-HV
	AMS, AMD
	FS
	AMFS
	KLS, KLD
	LSN, LSA, LSW
	X Series
	KLC
	MTS
	OLF-P
	NxTM
	IXU
	Triton-A
	Triton-E
	NAV
	SVD01
	SVD
	OXS

Appendix

SCHROEDER INDUSTRIES 163

Appendix Contamination Classification

Extended to particle range 2 - 5 μm

NAS-	Number of Particles/100 ml					Amount of Contamination (ACFTD)	
Class	2 - 5 µm	5 - 15 µm	15 - 25 µm	25 -50 µm	50 - 100 µm	> 100 µm	[mg/l]
00	625	125	22	4	1	0	—
0	1,250	250	44	8	2	0	0.01
1	2,500	500	88	16	3	1	—
2	5,000	1,000	178	32	6	1	—
3	10,000	2,000	356	63	11	2	—
4	20,000	4,000	712	126	22	4	0.1
5	40,000	8,000	1,425	253	45	8	—
6	80,000	16,000	2,850	506	90	16	0.2
7	160,000	32,000	5,700	1,012	180	32	0.5
8	320,000	64,000	11,400	2,025	360	64	1
9	640,000	128,000	22,800	4,050	720	128	3
10	1,280,000	256,000	45,600	8,100	1,440	256	5
11	2,560,000	512,000	91,200	16,200	2,880	512	7 - 10
12	5,120,000	1,024,000	182,400	32,400	5,760	1,024	20
13	—	2,048,000	364,800	64,800	11,520	2,048	40
14	_	4,096,000	729,000	129,600	23,040	4,096	80

Contamination Classification According to SAE AS 4059(D)

	ISO 4402 Calibration	>1 µm	>5 µm	>15 µm	>25 µm	>50 µm	>100 µm
	ISO 11171 Calibration	>4 µm _(c)	>6 µm _(c)	>14 µm _(c)	>21 µm _(c)	>38 µm _(c)	>70 µm _(c)
	SAE Code	А	В	С	D	E	F
	000	195	76	14	3	1	0
	00	390	152	27	5	1	0
	0	780	304	54	10	2	0
	1	1,560	609	109	20	4	1
es	2	3,120	1,220	217	39	7	1
lass	3	6,250	2,430	432	76	13	2
n D	4	12,500	4,860	864	152	26	4
atic	5	25,000	9,730	1,730	306	53	8
min	6	50,000	19,500	3,460	612	106	16
nta	7	100,000	38,900	6,920	1,220	212	32
ö	8	200,000	77,900	13,900	2,450	424	64
	9	400,000	156,000	27,700	4,900	848	128
	10	800,000	311,000	55,400	9,800	1,700	256
	11	1,600,000	623,000	111,000	19,600	3,390	512
	12	3,200,000	1,250,000	222,000	39,200	6,780	1,020

Contamination Classification

	Number of Particles/ 1 ml			Number of Particles/ 1 ml	
ISO- Class	more than	up to and up including	ISO- Class	more than	up to and up including
0	0.00	0.01	15	160	320
1	0.01	0.02	16	320	640
2	0.02	0.04	17	640	1,300
3	0.04	0.08	18	1,300	2,500
4	0.08	0.16	19	2,500	5,000
5	0.16	0.32	20	5,000	10,000
6	0.32	0.64	21	10,000	20,000
7	0.64	1.3	22	20,000	40,000
8	1.30	2.5	23	40,000	80,000
9	2.50	5	24	80,000	160,000
10	5	10	25	160,000	320,000
11	10	20	26	320,000	640,000
12	20	40	27	640,000	1,300,000
13	40	80	28	1,300,000	2,500,000
14	80	160			

Current ISO codes are made up of 3 numbers representing the number of particles $\ge 4 \mu(c)$, $\ge 6 \mu(c)$ and $\geq 14 \mu(c)$. The particle count is expressed as the number of particles per ml.

- Reproducibility below scale number 8 is affected by the actual number of particles counted in the fluid sample. Raw counts should be more than 20 particles. If this is not possible, then refer to bullet below.
- When the raw data in one of the size ranges results in a particle count of fewer than 20 particles, the scale number for that size range shall be labeled with the symbol \geq .

EXAMPLE: A code of 14/12/≥7 signifies that there are more than 80 and up to and including 160 particles equal to or larger than 4 μ (c) per ml and more than 20 and up to and including 40 particles equal to or larger than 6 μ (c) per ml. The third part of the code, \geq 7 indicates that there are more than 0.64 and up to and including 1.3 particles equal to or larger than 14 μ (c) per ml. The \geq symbol indicates that less than 20 particles were counted, which lowers statistical confidence. Because of this lower confidence, the 14 μ (c) part of the code could actually be higher than 7, thus the presence of the \geq symbol.

Appendix Contamination Classification in Accordance ISO 4406:1999 **Retrofit System** KLS, KLD **X** Series KLC

Appendix

with

Appendix Viscosity Chart

Viscosity Chart Appendix

Appendix FluidMonitoring Software FluMoS

FluidMonitoring Software FluMoS light

FluMoS Light fluid monitoring software is a software package for importing, displaying and processing data from Schroeder Industries fluid sensors. 3 sensors can be connected at the same time!

FluMoS Light can be used in conjunction with the latest generation of HSI interface sensors (TCM, TMU, TMS, TWS-C) and the sensors without HSI interface (TIM, TPM).

The FluMoS Light software is used to:

- Online display of measured values on the PC in table and graphic formats
- Storage of log files on hard disk
- Display of log files from hard disk/diskette and storage as graphic file
- Processing of stored log files with Microsoft Excel

Applications:

- Remote monitoring of values measured by sensors
- Condition-based maintenance planning

FluidMonitoring Software FluMoS mobile

Schroeder FluMoS Mobile for Android – Your Access to Schroeder's FluidControl Units

Get your fluid condition monitoring measurement data on your Android device!

FluMoS Mobile is a tool for displaying and downloading measurement data from the FluidControl Unit FCU 1315 and TMU via *Bluetooth*[®] wireless technology connection as well as the SensorMonitoring Unit SMU 1200 to your Android device. When the TCM, TWS-C, TMS and other smart sensors are used in conjunction with the CSI-C-11, the FluMos Mobile App can be accessed via WiFi connection to display and download measured data.

FluMoS Mobile Features (Version 1.10)

- Displays current measurement values (solid particle contamination, water saturation and temperature) of your FluidControl Unit FCU1315 and TMU in table format.
- Displays measurement value progress (solid particle contamination, water saturation and temperature) of your FluidControl Unit FCU1315 and TMU in graphic format (one graphic per measurement channel)
- Selective download of log files in .dat format from the internal memory of the FCU1315 and TMU or SMU 1200 to your Android device
- Online storage of measurement data on your Android device

[possible with successor version]

You can easily forward the .dat files per e-mail to other devices such as a PC.

The files can then be processed in FluMoS.

FluidMonitoring Software FluMoS mobile -Screenshot

Notes Section:

Notes Section: _____

Reference List

H. Werries, "Einfluss von Fremdpartikeln in Walzlagern und Maßnahmen zu ihrer Vermeidung", University of Hanover, 1992

R.W. Park, Moog Australia Pty Ltd., Contamination Control - A Hydraulic OEM Perspective, Monash University, Australia, 1997

Fluid Power University of Bath, GB Total Cleanliness Control in Hydraulic Systems

ISO 4405:1991 Hydraulic fluid power - Fluid contamination - Determination of particulate contamination by the gravimetric method

ISO 4406:1999 Hydraulic fluid power - Fluids - Code for defining the level of contamination of solid particles

ISO 4406:1987 Hydraulic fluid power - Fluids - Methods for coding level of contamination by solid particles

CETOP - RP 94 H - Determination of solid particulates in hydraulic fluids using an automatic particle counter employing the light extinction principle

ISO 4407:1991 Hydraulic fluid power - Fluid contamination - Determination of particulate contamination by the counting method using a microscope

ISO 11171:1999 Hydraulic fluid power - Calibration of liquid automatic particle counters

ISO 4402:1991 Hydraulic fluid power - Calibration of automatic count instruments for particles suspended in liquids - Method using classified AC Fine Test Dust contaminant

NAS 1638: Cleanliness requirements of parts used in hydraulic systems Acdelco - Steering, USA, *Remanufacturing Process - Cleanliness*, www.acdelco.com, 2001

University of Würaburg, Fluid Mechanics lecture

Carosso, Nancy- NASA - USA, Contamination Engineering Design, www.de.ksc.nasa/dedev/labs/cml_lab/ CONTMON_DESIGN.html #1.1

Hydraulic & Lube Filtration Accessories

Filter Systems

Fuel Filtration Process Filtration

Advanced Fluid Conditioning Solutions®

L-2681 | 2019

*To access more information about Schroeder, scan the code with your app-enabled smartphone.

© Copyright 2019 Schroeder Industries. All rights reserved

www.schroederindustries.com | 580 West Park Road | Leetsdale, PA 15056-1025 | 1.800.722.4810 p | 724.318.1200 f