Fuel Filtration
Vision Mission Value Quality Statement:

Vision:
We design solutions for industry and for the success of our customers by:
■ Optimizing the use of technology with applications
■ Using an efficient, timely customized process to fill specific customer needs
■ Increasing capacity and streamlining operations.
■ Preserving our reputation for reliability
■ Expanding globally to support our customers and stay current with new technologies
■ Leveraging and sharing our knowledge to meet challenges openly
■ Nurturing a creative, cooperative culture committed to the individual and to providing the best solutions for the customers

Mission Statement:
Partnerships
Innovating products, processes and services to improve performance and efficiency in our industry.

Schroeder Industries Core | Shared Values:

Honesty
Day-to-Day Behaviors:
■ Tell the truth at all times, in all matters
■ Have open lines of communication and share timely, accurate and thorough information with internal and external customers
■ Do not steal and respect each other's and the Company's property

Teamwork
Day-to-Day Behaviors:
■ Work as a team
■ Cooperate within and between departments
■ Coach and mentor; listen and share knowledge, experience and ideas
■ Treat others with respect and consideration in all circumstances
■ Invest in the development and growth of all team members
■ Keep our work areas safe and clean

Leadership
Day-to-Day Behaviors:
■ Recognize that we are empowered to act as leaders and participate in the decision making process
■ Take responsibility for and have pride in our work
■ Set goals and celebrate the efforts and accomplishments of our teammates
■ Value our greater community and take leadership roles in our neighborhoods and for the environment

Ingenuity | Innovation
Day-to-Day Behaviors:
■ Value innovative thinking and the generation and implementation of new ideas to solve customer (internal & external) problems
■ Be flexible and adapt to new ideas and different ways of doing things
■ Utilize available resources for new designs and innovations

Quality Policy:
Continuous improvement in our business to ensure a quality product, shipped on time, without compromise.

Limitations of Liability
The information contained in the catalog (including, but not limited to, specifications, configurations, drawings, photographs, dimensions and packaging) is for descriptive purposes only. Any description of the products contained in this catalog is for the sole purpose of identifying the products and shall not be deemed a warranty that the products shall conform to such description. No representation or warranty is made concerning the information contained in this catalog as to the accuracy or completeness of such information. Schroeder Industries LLC reserves the right to make changes to the products included in this catalog without notice. A copy of our warranty terms and other conditions of sale are available upon request. A placed order constitutes acceptance of Schroeder’s terms and conditions.

Failure, improper selection or improper use of the products and/or systems described herein or related items can cause death, personal injury and property damage.

This catalog and other documentation from Schroeder Industries provides product information for consideration by users possessing technical expertise. It is important that the user analyze all aspects of the specific application and review the current product information in the current catalog. Due to the variety of operating conditions and applications for these products, the user is solely responsible for making the final product selection and assuring that all performance, safety and warning requirements of the application are met.

The products described herein, including without limitation, product features, specifications, design, availability and pricing are subject to change at any time without notice.
<table>
<thead>
<tr>
<th>Section</th>
<th>Bulk Diesel Filtration Products (Coalescing, Absorbing and Particulate)</th>
<th>Pressure psi (bar)</th>
<th>Flow gpm (L/min)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 1: Bulk Diesel Filtration Products (Coalescing, Absorbing and Particulate)</td>
<td>ICF: In-line Bulk Fuel Coalescing Filter</td>
<td>150 (10)</td>
<td>16 (60)</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>BDF1: In-line Particulate & Coalescing Assembly</td>
<td>150 (10)</td>
<td>25 (95)</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>BDF2: In-line Particulate & Coalescing Assembly</td>
<td>150 (10)</td>
<td>50 (189)</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>BDA: In-line Water Absorbing Diesel Fuel Bag Filter</td>
<td>145 (10)</td>
<td>35/70 (132/265)</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>GHPF: GeoSeal® High-Flow Particulate Filter</td>
<td>150 (10.3)</td>
<td>100 (380)</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>GHCF: GeoSeal® High-Flow Coalescing Filter</td>
<td>150 (10.3)</td>
<td>25 (95)</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>QCF: High flow In-line Particulate & Coalescing</td>
<td>100 (7)</td>
<td>70 (265)</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>BDS: Skid Mount Particulate & Coalescing</td>
<td>100 (7)</td>
<td>70 (265)</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>BDS2: Skid Mount Particulate & Coalescing</td>
<td>100 (7)</td>
<td>70-140 (248-530)</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>BDS3: Skid Mount Particulate & Coalescing</td>
<td>100 (7)</td>
<td>140-210 (530-795)</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>BDS4: Skid Mount Particulate & Coalescing</td>
<td>100 (7)</td>
<td>210-280 (795-1060)</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>LVH-F: High Flow Particulate & Coalescing</td>
<td>150 (10)</td>
<td>211-951 (799-3600)</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>LVH-C: High Flow Particulate & Coalescing</td>
<td>150 (10)</td>
<td>211-476 (799-1802)</td>
<td>67</td>
</tr>
<tr>
<td>Section 2: Bulk Diesel Mobile Filtration Units</td>
<td>BDFC: 14/25 gpm Particulate & Coalescing Cart</td>
<td>-</td>
<td>14/25 (53/95)</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>BDFP: 14/25 gpm Diesel Filter System, Plate Mounted</td>
<td>14 (53)/25 (95)</td>
<td>-</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>BDC: 25/70 gpm Particulate & Coalescing Cart</td>
<td>25/70 (95/275)</td>
<td>-</td>
<td>81</td>
</tr>
<tr>
<td>Section 3: On-Board Diesel Filtration Products (Particulate and Coalescing)</td>
<td>HDP: Heavy-Duty PreCare Filter</td>
<td>14.5 (1) Suction</td>
<td>up to 476 gph (up to 1800 lph)</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>HDPD: Heavy-Duty PreCare Duplex Filter</td>
<td>14.5 (1) Suction</td>
<td>up to 476 gph (up to 1800 lph)</td>
<td>91</td>
</tr>
<tr>
<td>Section 4: Biodiesel Purification Products</td>
<td></td>
<td></td>
<td></td>
<td>95</td>
</tr>
<tr>
<td>Section 5: To Meet ASTM Standards for Cold Flow Properties</td>
<td>ColdClear® BCC Series Filter Housings for Biofuels</td>
<td></td>
<td></td>
<td>101</td>
</tr>
<tr>
<td>Section 6: Filtration Carts, Skids & Fuel Diagnostic Tools</td>
<td>Fluid Conditioning Specialists</td>
<td></td>
<td></td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>Other Fuel Conditioning Specialists</td>
<td></td>
<td></td>
<td>107</td>
</tr>
<tr>
<td></td>
<td>Final Polishing Solutions for Bio & Diesel Fuels</td>
<td></td>
<td></td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>FCU 1315</td>
<td>FluidControl Unit</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diesel Fuel Analysis Kits</td>
<td></td>
<td></td>
<td>112</td>
</tr>
<tr>
<td>Section 7: Competitive Replacement Coalescing Elements</td>
<td></td>
<td></td>
<td></td>
<td>115</td>
</tr>
<tr>
<td>Glossary & Appendices</td>
<td>Appendix A: Relative Humidity-Absolute Water Content</td>
<td></td>
<td></td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>Appendix B: Understanding EN14214 / ASTM D6751 Specifications</td>
<td></td>
<td></td>
<td>126</td>
</tr>
<tr>
<td></td>
<td>Appendix C: Worldwide Fuel Charter</td>
<td></td>
<td></td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>Appendix D: Schroeder Technical Cleanliness Testing & Research Capabilities</td>
<td></td>
<td></td>
<td>132</td>
</tr>
</tbody>
</table>
Introduction | The New World of Advanced Diesel Filtration

Schroeder Industries | Advanced Fluid Conditioning Solutions®: When Cleanliness is Mission Critical

Schroeder Industries, an ISO 9001:2008 certified company, is focused on developing ADVANCED FLUID CONDITIONING SYSTEMS AND PRODUCTS, and we have done so over the last sixty years. The designs in this catalog are the result of thousands of hours of laboratory research, field testing and decades of experience. Schroeder pioneered the development of micron filtration, helping to set performance standards in industrial fluid power systems. As a result, Schroeder is now a leader in almost all liquid filtration and fluid conditioning applications. Proof that our expertise lies in our broad mix of unsurpassed cleanliness products.

Our mission statement reflects our continuing commitment to excellence.
“Innovative products, solutions, process and service to improve performance and efficiency in industry.”

Partnerships - We design solutions for industry and for the success of our customers by:

- Optimizing the use of technology with applications
- Using an efficient, timely customization process to fill specific customer needs
- Increasing manufacturing capacity and streamlining operations
- Preserving our reputation for reliability
- Expanding globally to support our customers and stay current with technologies
- Leveraging and sharing our knowledge to meet challenges openly
- Nurturing a creative, cooperative culture committed to the individual and to providing the best solutions for our customers

Our goal is to be your filtration partner. Our expertise in filtration technology, our superior filter and element manufacturing capabilities, and our dedication to customer service and product support are the reasons we are considered “The Filter Company.” We are committed to providing the best available filter products to meet necessary cleanliness levels at a competitive price. As a cost-effective quality producer, we can work with your purchasing department to supply contamination control technology or develop long-range pricing programs that can improve your company’s bottom line.

Product Distribution

Schroeder Industries has in place a strategically located domestic and international distribution network, supported by our professional and experienced sales and marketing team. Distributor personnel are trained in the important aspects of filter application by Schroeder in training sessions held at our factory and around the globe. The effectiveness of our product and service support is multiplied by utilizing Schroeder's extensive distributor network. All Schroeder Industries distributors meet very strict criteria to enhance our ability to serve the needs of our valued customers. Schroeder's distributor network includes over 100 distributor locations throughout Europe, the United Kingdom, South Africa, Australia, Asia, North America and South America, so that customers worldwide can rely on Schroeder's exceptional support.
Manufacturing and Testing

Schroeder Industries’ corporate headquarters are located in Leetsdale, PA (USA) with an additional manufacturing facility in Cumberland, MD (USA). Filter housings and diagnostic and specialty products are manufactured at our Pittsburgh plant, while filter elements are manufactured in our Cumberland plant. Both facilities have the skilled workforce and the capacity to meet our customers’ needs. Schroeder’s research and development center as well as our contamination control laboratory are located at our corporate headquarters.

An Open Invitation

We invite you to present us with any specific filtration challenge you may experience. Schroeder will design and make filters to meet your specific requirements. To find out more, and/or obtain a quote, call us to speak with a sales representative or technical specialist. They can help determine the optimal filtration strategy for a given system. While the quantity of any product to be manufactured to a customer’s needs will determine the economic feasibility of a particular project, in many cases, we can offer modified products in relatively small quantities at competitive prices and short lead times.

Requirements Have Changed! (The Need)

How Clean and Dry is Your Fuel?

Because many people assume they’re buying quality fuel that meets the required specifications, the cleanliness of diesel fuel is seldom questioned. That has changed, and with the cleanliness requirements mandated by the Tier 4 injection systems it is now time to ask “How clean does my fuel need to be?” From the 2µm tolerances in the 30,000+ psi injection systems to compliance with the warranty requirements of the injector manufactures, this question will in reality become the new benchmark. The game has changed and in the following pages we will clearly define how today’s fuel, fuel systems and new emissions requirements MANDATE that both OEM’s and END USERS use only the best filtration.

Ten years ago a diesel engine did not require anything close to the level of filtration provided by Schroeder. With poor quality filters the engine would still run, maybe not efficiently, but it would run. But with today’s engines both the particulate and the coalescing filters must be of only the highest quality. Be assured the results of poor filtration are no longer just black smoke and a lack of horsepower. No, with Tier 4 engines’ poor filtration will likely mean lost revenue due to downtime as the operator pays to replace a failed injector. These problems are both manageable and should not add cost. With good filtration installed at the fill point and at the engine will run more efficiently and continuously, but the filters used and the higher level of filtration required can no longer be an afterthought. It must become the focal point of any feel and or any operator. Filtration quality and the profitable operation of any Tier 4 engine will become one in the same.
The New World of Advanced Diesel Filtration

Tier 4 Requirements Demand a Sophisticated Approach and the Highest Quality Filtration

The Tier 4 engine is a technology shift and when compared to Tier 1-3 engines, Tier 4 engines require a completely superior level of filtration to run, much less to run reliably and efficiently. Tier 4 diesel engines will now react more violently if the injectors are constantly bombarded by contamination. To put this into perspective newly delivered bulk diesel fuel typically has an ISO cleanliness level of ISO 22/20/18 to ISO 21/19/17 but today’s injectors need to see fluid with a cleanliness level of below ISO 11/8/6 (aerospace cleanliness).

As we have and continue to transition into the new world of Tier 4 requirements, the answer to the question “How clean does my fuel need to be” will be – ISO 11/8/6 or better and the most cost effective way to consistently achieve this is through the use of the highest capacity, highest quality, particulate and coalescing filtration used at the point of dispense (at the bulk tank and on the engine itself). The engine filter can no longer be the only solution. There is simply not enough room in the engine and the cost to address the cleanliness only at the engine will become too high. Now going forward, bulk fuel filtration must be ground zero and it must be of the highest quality. The filtration performance specifications are now important and users must pay attention to the specifications and mandate only the best.

It’s against this emissions reduction backdrop that Schroeder Industries developed its series of bulk / on-board, fuel-specific filtration products. From an environmental, economic and regulatory viewpoint we defined the critical elements our products needed to achieve customer needs, in doing so we have laid the ground work now and for the future. While our competitors approach with yesterday’s technology, Schroeder Industries is focused on being a world leader in the fuels filtration field by being positioned to real issues of today.

High Pressure Common Rail System

This series of engines is built to more stringent specifications than ever before. High operating pressure in excess of 30,000 psi and 2-5 micron injector nozzle tolerances make engine injector systems and fuel pumps vulnerable to contamination levels that were not an issue in the past. While the Common Rail System does provide improved power, fuel efficiency and lower exhaust emissions it, at the same time requires a new level of fuel cleanliness and care. This cleanliness requirement for the fuel is now mission critical to system operation. OEM engine and injection makers are requiring that fuel used in the engine meet tight guidelines before warranty claims are accepted. Today’s requirements call for diesel fuel cleanliness at the engines injections of ISO 11/8/6 and a water level of <200 ppm water, both of which are harder to obtain with the surfactants for lubricity found in today’s ULSD.
Ultra Low Sulfur Diesel | ULSD

Fuel requirements changed from Low Sulfur Diesel (LSD) to Ultra Low Sulfur Diesel or (ULSD). This change was mandated between 2006-2010 in North America and Europe. The purpose of moving to ULSD was to reduce the sulfur content from 500 ppm to 15 ppm, this in turn reduced exhaust emission by more than 90% from the engine. To achieve this much of the lubricity agents in Low Sulfur Diesel fuel are now stripped out in the production process. Not only is much of the sulfur removed, but so is some of the original fuels built in lubricity. The result is an ultra-clean fuel where surfactants must be added to provide the needed lubricity. Diesel engines depend on the lubricity of the fuel to keep moving parts from wearing prematurely. Lubricity additives such as lubricity enhancers and anti-wear additives have also in some fuels been replaced with biodiesel blended into diesel. ULSD15 is generally hydrophobic (does not like to hold water) with 25-110 ppm water saturation point at room temp. Unlike traditional LSD the biodiesel additives are hydrophilic (they like to hold water). For this reason when biodiesel is blended, the diesel fuels’ saturation points can rise to 250 ppm (B2), 500 ppm (B5), and 1,600 ppm (B20). That is OK, but the user must understand that there is more water in the fuel and that this water can become free water when the temps decrease. More free water in storage tanks! More free water at the injector, more free water molecules in the combustion chamber none of which are good for the engine or its performance. Water must be eliminated and this is now even more difficult when the Inter Facial Surface Tension (IFT) of Diesel with surfactants and or biodiesel blends is lower making it harder to separate the water in ULSD fluids that it was in the past. A coalescing filter that in the past was >90% efficient in traditional diesel is typically now only, 66% efficient at removing water in the new ULSD fuels.

Biodiesel Addition to ULSD15 as a Blend

The EPA requirement under Renewable Fuel Standard 2 required that renewable fuel, such as biodiesel, for diesel be blended into the fuels. The goal is to reduce dependence on carbon-heavy fuels and contribute to the goal of reducing carbon pollution 17 percent below 2005 levels by 2020. In 2008, this involved 9 billion gallons and is expected to increase to 36 billion gallons by 2022.

Additional challenge, the bulk tank and water from condensation and the delivered fuel itself. Existing bulk tanks, water, microbes and bacteria, hundreds of thousands of bulk tanks exist in North America and around the world today. Most bulk tanks are not designed to help meet the cleanliness requirements of Tier 4. Many traditional bulk storage reservoirs are open to their surrounding atmospheres. Almost all have some volume of free water caused by temperature changes, ingestion and delivered fuel quality. More importantly poor tank design makes the complete removal of all free water nearly impossible. Free water in diesel fuel accelerates corrosion and fuel degradation. It can also create an ideal growth environment for microbial contamination. Bacteria can grow in the water at the fuel interface, and can cause the liquid fuels to breakdown and involves all grades. The results can be the accelerated corrosion of metals, especially iron and steel along with plugged fuel systems and clogged filters and clogged lines. Bacteria grows better in warm climates and with favorable conditions mean they can double their population every 20 minutes; 8 Billion bacteria per gallon have no effect on fuel clarity! Fungus tends to grow on solid surfaces, like filters, and in piping. Once established, the biomass will grow faster than a bacterial biomass. It can grow over a wide range of temperatures but grows quicker in summer with the higher temperature, increased airborne contaminants and higher fluid temperature.

Previously acceptable “industry standard” filtration solutions won’t make the grade in Tier 4 engines

Against this backdrop, Schroeder Industries developed its series of bulk diesel fuel specific filter products. The critical needs are defined and our desiccant breathing systems, our series of bulk housings and skids and fuel. Our specially engineered patent-pending coalescing elements we provide the world with the right portfolio of products to meet almost any of today’s bulk fuel requirements. We are focused on being a world leader in the diesel fuel filtration by being positioned to addresses the needs of customers with the following experience and forward thinking technologies.
Past Practice
Separation of emulsified water from diesel fuel is a long standing requirement for diesel engine operation. Water removal has been traditionally performed by a fuel-water separation filter mounted in the engine fuel system or, in tough operating environments where downtime has been managed by implementing best practice fluid maintenance, as part of the bulk tanks staged filtration at the dispensing system. The most typical filtration media found in such separators is a single resin impregnated hydrophobic barrier, such as silicone treated cellulose. This media separates water on its water repellent surface. Water in the fuel is rejected and beads up on the upstream side of the barrier media. As more water is rejected, beads coalesce into large drops, and drain into a collection cup while the fuel passes through a port located above the sump.

There are often unintended outcomes when a process or specification change is made. The changes to diesel engines and diesel fuels provide no exception to this rule. The transition to ultra-low sulfur diesel (ULSD) provides a specific example.

In order to meet mandated sulfur levels, ULSD is subjected to refining processes that removes not only the sulfur but also the inherent lubricity of the original higher sulfur diesel. The result is the ultra-clean fuel. Unfortunately, it is an ultra-clean fuel that has been stripped of its native lubricity. Fuel lubricity is critical as it is the fuel’s lubricity that is one area protecting the injection systems from catastrophic wear and precise control of combustion. A fuel system must hold pressure in order to inject fuel into the cylinder. Wear induced leaks can lead to engine failure due to fuel starvation.

As lubricity deficiencies were surfacing with early ULSD adoption, biodiesel production and the push to use biodiesel began to take hold in the North American diesel market. Biodiesel improved ULSD lubricity, and as a result, generated some independent motivation for its use as a blended lubricity component of diesel fuel. The additional perceived need for a domestic or “green” fuel supply, and pressure to minimize fossil carbon emissions have prompted governments mandate a percent of biodiesel in diesel blends.

Just as the processing of ULSD produced unforeseen side effects in diesel fuel lubricity, the failure of existing fuel-water separators to react to the changing needs became apparent. With the lubricity additives the ULSD blends containing biodiesel, created conditions where the industry standard commercial fuel-water separators failed to remove 40-100% of fuel-entrained water. The side effect is now typically 40% more water downstream of the filters that in the past worked at a 90% efficiency. Meanwhile there is no way for an operator to know it is happening unless the effects are drastic and observed and questions asked. Unlike particle filters, which generate pressure differentials prior to by-pass alerting the operator to the end of the element life, there is nothing that communicates to the operator that the fuel-water separator is not removing water. Fuel-water separators rely on an operator or auto-valve to empty a water to a collection chamber when the housing is partially full. If the collection chamber does not fill up, it is not an indicator of fuel-water separator failure; rather it is an indicator of dry fuel. The result is the fuel-water separator can be passing the water continuously into the injection system without the operator’s knowledge.
Fuel Surfactant and ULSD15

The root cause of fuel-water separator failure in ULSD-biodiesel blends is increased fuel surfactant. Although given separate titles to address the lubricity issue, lubricity enhancers, anti-wear additives, and biodiesel can all be grouped into a single molecular family: surfactants. Fuel and water are classes that normally do not dissolve into one another; if forced to coexist, they are most stable as separate layers, with the fuel layer on top of the water layer. The degree to which these layers repel is measurable as the interfacial surface tension (IFT). If mixed, an emulsion is formed, where water briefly exists as suspended drops in the fuel. Surfactants are molecules unique in that they form strong associations with both fuel and water. When surfactants are in a fuel, they associate with water, and increase fuel-water compatibility. The increased compatibility is reflected in lower IFT between the two fluids. This unique surfactant behavior allows more water to dissolve into the fuel.

Surfactants create sufficiently small water drops (because they do not want to coalesce into larger drops) that will often pass through the media without encountering it. Surfactants also stabilize the emulsion from separation so that drops that do impact the media are less likely to fall out of the fuel at the barrier media. Also, drops that impact other drops resist coalescing into the larger drops necessary for successful separation. Collectively, the result of blending additives and biodiesel into ULSD is a significant reduction of the fuel-water separation process efficiency and finally the escape of water into the injector circuit.

You may be asking “How this can take place and nobody knew?” Testing in obsolete fuels is the reply! Fuel-water separating devices must prove efficacy in standardized industry tests like SAE J1488 (pressure side = smaller water droplets). Water separation tests involve mixing a precise amount of water into fuel and passing the resulting emulsion through the separating device. Water content in the fuel upstream and downstream of the device is measured at regular intervals and time-weighted average water removal efficiency for the device is calculated. Water removal testing is very much all or nothing, with most end users requiring at least 95% average water removal efficiency for any commercial device.

At the same time another unforeseen consequence of the mandated fuel change surfaced: A lack of correlation of the tests with actual field performance. The result, the end user is largely unaware of the alarming failure consistency of fuel dewatering systems in ULSD-biodiesel blends. This is the case because the time required for a legislative body to mandate 2% biodiesel inclusion in diesel is fleeting relative to the time needed to adapt proven standardized industry tests for the new fuel. Regardless of the procedure selected, there are currently key differences between fuels surfactants / emulsifications found in the field versus the tests that are still specified to measure and rate water separator performance. Until resolved, the result is a disconcerting overestimation of a separators fuel water separation performance and capability as measured using standardized tests.

Tier 4 Fuel Quality Requirements

<table>
<thead>
<tr>
<th>Organization</th>
<th>Particulate ISO 4406</th>
<th>Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bosch</td>
<td>11/8/6 at Injector</td>
<td><200 ppm</td>
</tr>
<tr>
<td>CAT</td>
<td>18/16/13 at storage</td>
<td><500 ppm</td>
</tr>
<tr>
<td>CUMMINS</td>
<td>18/16/13 at storage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11/8/3 at injector</td>
<td><200 ppm</td>
</tr>
<tr>
<td>Worldwide Fuel Charter</td>
<td>18/16/13</td>
<td>No free or emulsified, dissolved <200 ppm</td>
</tr>
</tbody>
</table>

Most diesel storage tank owners, maintenance staff and company buyers are not knowledgeable of these guidelines.
Schroeder Industries and Advanced Tier 4 Ready Diesel Fuel Filtration Solutions:

Particulate and Fuel Water separation Filtration Solutions for Today Fuels used in Today’s Engines- Job matched filtration; At the Bulk Tank, at the Point of Fuel Dispense, and at the Engine.

Schroeder Industries is committed to delivering the solutions to allow OEM’s and users meet today’s diesel filtration requirements. We offer a series of diesel fuel filtration products working in-line and or in a fuel conditioning circuit with flow rates from 1.5 gpm to 1000 gpm. We offer condensation management solutions for the tank and the diagnostic tools such as particle counters and water sensors measure the results.

Design Principles of Schroeder Particulate Removal Filters & Elements

The highest quality particulate removal filtration with the best combination of Dirt Holding Capacity, Low Element Delta P, the highest beta stability throughout the service life of the element at all of the available micron sizes applied to achieve and maintain the target cleanliness level for each application. Contamination removal efficiencies from 1µm>Beta1000 to as open as 150µm metal mesh. Most importantly when filtering diesel fuel we use these filters and elements upstream to protect and extend the life of the downstream dedicated coalescing elements. We do this because testing shows that with our patent-pending materials of construction, our coalescing elements can will outperform the competition averaging <96% efficiency in today’s fuels and because they will, by their materials and design, last for years if protected from premature contamination related failures using the right upstream particulate filter. In short, Schroeder offers an entirely new level of coalescing performance, one that has an associated cost, but one, when used correctly, mandates total cost to use our solution to be the lowest over time. The technical details and the design principals of our particulate elements are shown below.

Design principles of the water removal (Water Coalescing) filters and Elements - Inside-Out flow to optimize coalescing effect 5 micron synthetic pre-filter pleat pack to protect the downstream components, depth tube coalesces water which either drains to the bottom or creates large droplets, Downstream 25 micron treated hydrophobic barrier sleeve traps droplets <25µ, This 3 elements in one pre-filter, coalescing, and separation (most competitors have separate elements for each function) = smaller size! Tested per SAE J1488 (pressure side = smaller water droplets), Tested with fuel down to 12 dynes/cm IFT to replicate performance with poor fuel quality.

Contaminated fuel enters the element as the Fuel passes through a 3 or 5 micron synthetic media pleat pack. Wet fuel then passes through the coalescing layer. Water collects and drains from the element forming large droplets, the fuel then passes through the downstream hydrophobic barrier. Water droplets are repelled by barrier and fall to bottom of the chamber, which is collected into the filter housing sump.

Through the union of high surface area the coalescing media or tube provides the perfect balance to collect and trap both water and contaminants in a single element, the composite barrier separation media element have been developed with greater than 99% water removal capability in all but the highest surfactant ULSD or ULSD-biodiesel blends. Our Fuels product lines cover a range of particle removal efficiencies and dirt holding capacities, giving the end user flexibility in pairing flow requirements to their need. This coalescing media provides a minimum of 95% water removal efficiency from biodiesel blends (B5). Water exits the media in the form of drops that settle out of the flow.

Design Principals for Diesel Fuel specific Skids and Carts for specific Fuel applications Schroeder has developed many of the core diesel products into turnkey filtration solutions with integrated pump motor dispense functions for almost every diesel application from gen sets to fleet fueling tanks to the ag tank at a farm. All are designed to address the challenges of fuel in its environment.

In the balance of this catalog, we trust you will find the products you require to meet your demanding needs.
The New World of Advanced Diesel Filtration

The Cost of Dirty Fuel

All new off-road diesel engines now must meet Tier 4 regulations. In order to achieve Tier 4 requirements, manufacturers of engines and injector systems have gone to high pressure, common rail, injection systems. The pressures can exceed 30,000 psi and might go even higher in the future. Particulates left in the fuel under the high pressure, combined with very small injector nozzle clearances as small as 2µm, can cause premature failure of nozzles or system components.

Failures of the injection system caused by particulates and water could result in repair costs of around $1,500 per injector. The associated costs for a failure due to parts damage, repair & down time, loss of production and image loss of the operation could add up to ten-thousands of dollars per incident!

Traditional On-board Engine Filtration & Fuel Water Separation is no longer enough to insure performance. Instead, a comprehensive filter strategy is required to assure proper fuel quality for trouble free engine operation:

Comprehensive Fuel Filtration Strategy by Application and by Products
Schroeder filter elements meet a wide variety of requirements in today’s workplace, from the simplest to the most sophisticated fluid power systems. Established industry standards enable users to select the optimal filter element for any application.

When evaluating the performance of hydraulic filter elements, the most important parameters to consider are:

(a) efficiency
(b) beta stability
(c) dirt holding capacity
(d) pressure drop vs. flow

(a) **Efficiency**, or filtration ratio, expressed by “Beta” (ß) relates to how well an element removes contamination from fluid. Higher efficiency translates to cleaner oil, better protection of system components, less down time for repair, and lower maintenance costs.

(b) **Beta stability** is defined as an element’s ability to maintain its expected efficiency as differential pressure across the element increases. Differential pressure will increase as contamination is trapped, or with an increase in fluid viscosity (cold start). Beta stability is important because it relates to how well an element will perform in service over time. When the element is loaded with contamination, or when it is subjected to cold starts, will it perform as well as it did when new?

(c) **Dirt holding capacity (DHC)** is the amount of contamination that an element can trap before it reaches a predetermined “terminal” differential pressure. Dirt holding capacity is related to element life. Since elements with higher DHC need changed less frequently, DHC has a direct impact on the overall cost of operation. When selecting filter elements, it is beneficial to compare DHC of elements with similar particle removal efficiency.

(d) **Pressure Drop vs. Flow** is a measure of resistance to fluid flow in a system. It is important to consider the initial pressure drop (Δp) across the filter element (and housing). Ideally, a filter element should be sized so that the initial pressure drop across the clean element (plus the filter housing drop) is less than half the bypass valve setting in the filter housing.

When selecting a filter element for your system, be sure to consider all four of these performance criteria. If an element is strong in three areas, but weak in another, it may not be the right choice.

At every level of filtration, Schroeder’s Excel-ZPlus® Z-Media® elements offer the best combination of high efficiency, high beta stability, high dirt holding capacity, and low pressure drop.

Filter element efficiency ratings, beta stability, and capacities are determined by conducting a multi-pass test under controlled laboratory conditions. This is a standard industry test with procedure published by the International Standards Organization (ISO 16889). The multi-pass test yields reproducible test data for appraising the filtration performance of a filter element including its particle removal efficiency. These test results enable the user to: (1) compare the quality and specifications offered by various filter element suppliers and (2) select the proper filter element to obtain the optimal contamination control level for any particular system.

Hydraulic fluid (Mil-H-5606) is circulated through a system containing the filter element to be tested. Additional fluid contaminated with ISO MTD Test Dust is introduced upstream of the element being tested. Fluid samples are then extracted upstream and downstream of the test element.

Dirt holding capacity is defined as the total grams of ISO MTD Test Dust added to the system to bring the test filter element to terminal pressure drop.

Figure 5. Multi-Pass Test Schematic
Particulate Removal Element Media Selection Considerations

The filtration ratio (more commonly referred to as the Beta ratio) is, in fact, a measure of the particle capture efficiency of a filter element.

Per ISO 16889

\[\beta_{x(c)} = \frac{\text{number of particles upstream} @ x(c) \text{ microns}}{\text{number of particles downstream} @ x(c) \text{ microns}} \]

where \(x(c) \) is a specified particle size.

Example: \(\beta_{10} = \frac{400}{100} = 4 \)

This particle capture efficiency can also be expressed as a percent by subtracting the number 1 from the Beta (in this case 4) and multiplying it by 100:

\[\text{Efficiency}_{10} = \left(\frac{4 - 1}{4} \right) \times 100 = 75\% \]

The example is read as "Beta ten is equal to four, where 400 particles, 10 microns and larger, were counted upstream of the test filter (before) and 100 particles, 10 microns and larger, were counted downstream of the test filter (after)."

The filter element tested was 75% efficient in removing particles 10 microns and larger.

To calculate a filter element’s percent efficiency, subtract 1 from the Beta, divide that answer by the Beta, then multiply by 100.

Example

<table>
<thead>
<tr>
<th>Step</th>
<th>Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\beta_{10(c)} > +1000)</td>
</tr>
<tr>
<td>2</td>
<td>(1000 - 1 = 999)</td>
</tr>
<tr>
<td>3</td>
<td>(999 ÷ 1000 = .999%)</td>
</tr>
<tr>
<td>4</td>
<td>(.999 \times 100 = 99.9%)</td>
</tr>
</tbody>
</table>

According to ISO 16889, each filter manufacturer can test a given filter element at a variety of flow rates and terminal pressure drop ratings that fit the application, system configuration and filter element size. Results may vary depending on the configuration of the filter element tested and the test conditions.

Currently, there is no accepted ISO, ANSI, or NFPA standard regarding absolute ratings. Some filter manufacturers use \(\beta_{x(c)} \geq 75 \) (98.7% efficiency) for their absolute rating. Others use \(\beta_{x(c)} \geq 100 \) (99.0% efficiency), \(\beta_{x(c)} \geq 200 \) (99.5% efficiency), or \(\beta_{x(c)} \geq 1000 \) (99.9% efficiency). Performance of Schroeder elements is shown in the Element Performance Chart for each filter housing in Sections 3 through 8 at a number of filtration ratios to allow the user to evaluate our performance against that of our competitors.

Beta stability is defined as an element’s ability to maintain its expected efficiency as differential pressure across the element increases. Differential pressure will increase as contamination is trapped, or with an increase in fluid viscosity. An element’s beta stability is displayed in the Filtration Ratio (Beta) vs. Differential Pressure curve from a typical multi-pass test report per ISO 16889. Good beta stability is demonstrated by consistent or improving efficiency as differential pressure builds across the element. Conversely, decreasing efficiency as pressure builds is a sign of poor stability. Poor beta stability is an indication of a filter element’s structural deficiency. It is a sign of potential problems in a “real world” situation. Contamination, "cold starts," and flow surges can all create high differential pressure across an element that may cause efficiency to decrease if it is not structurally sound. In cases of “cold starts” and flow surges, the media structure in elements with poor stability can become permanently damaged in milliseconds. The result is lower efficiency and decreased system protection without warning to the operator. High beta stability results when an element is well-built with quality, durable materials. Strength of filter media and reinforcement layers, impervious seaming, proper end cap adhesion, and a rigidly supported structure all play a part in an element’s beta stability. Excel-ZPlus® media structure typically maintains beta stability over 100 psi.
Beta Stability (continued)

Example of poor beta stability – efficiency declines as differential pressure increases.

Example of Excel-ZPlus® beta stability – efficiency does not decline as differential pressure increases.

Microscopic Photo - 50X magnification
Top: competitor’s media Bottom: Schroeder Excel-ZPlus® Z-Media®
Thin, weak media cannot withstand differential pressure as well as Z-Media®.

Example: BDC Single Pass Results - Diesel Storage Tank Bottom
Dirt holding capacity (DHC) is the amount of contaminant (expressed in grams) the element will retain before it goes into bypass. All other factors being equal, an element's DHC generally indicates how long the element will operate until it needs to be replaced. The element's life span is directly related to the cost of operating the filter.

Dirt holding capacity, sometimes referred to as "retained capacity," is a very important and often overlooked factor in selecting the right element for the application. The dirt holding capacity of an element is measured in grams of ISO medium test dust contaminant as determined from the multi-pass test (ISO 16889). When selecting filter elements, it is beneficial to compare the dirt holding capacities of elements with similar dirt holding efficiencies.

When sizing a filter, it is important to consider the initial differential pressure (ΔP) across the element and the housing. Elements offering a lower pressure drop at a high Beta efficiency are better than elements with a high ΔP at the same efficiency. At every level of filtration, Schroeder's Excel-ZPlus® Z-Media® elements offer the best combination of high efficiency, high stability, high dirt holding capacity, and low pressure drop. The pressure drop of an element is determined by testing according to ISO 3968.

The collapse (crush) rating of a filter (determined by ISO 2941/ANSI B93.25) represents the differential pressure across the element that causes it to collapse. The collapse rating of a filter element installed in a filter housing, with a bypass valve, should be at least two times greater than the full flow bypass valve pressure drop. The collapse rating for filter elements used in filter housings with no bypass valve should be at least the same as the setting of the system relief valve upstream of the high-crush element. When a high collapse element becomes clogged with contamination all functions downstream of the filter will become inoperative.

Table 5. Typical Dirt Holding Capacities for Z-Media® Elements

<table>
<thead>
<tr>
<th>Element Size</th>
<th>Z1</th>
<th>Z3</th>
<th>Z5</th>
<th>Z10</th>
<th>Z25</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZTA</td>
<td>9</td>
<td>7</td>
<td>10</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>ZTB</td>
<td>27</td>
<td>11</td>
<td>12</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>ZTB</td>
<td>40</td>
<td>18</td>
<td>21</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>KB</td>
<td>110</td>
<td>99</td>
<td>138</td>
<td>110</td>
<td>112</td>
</tr>
<tr>
<td>KI</td>
<td>85</td>
<td>88</td>
<td>130</td>
<td>104</td>
<td>106</td>
</tr>
<tr>
<td>KII</td>
<td>181</td>
<td>185</td>
<td>263</td>
<td>174</td>
<td>214</td>
</tr>
<tr>
<td>27KII</td>
<td>336</td>
<td>345</td>
<td>357</td>
<td>324</td>
<td>279</td>
</tr>
<tr>
<td>16Q</td>
<td>258</td>
<td>283</td>
<td>254</td>
<td>280</td>
<td>234</td>
</tr>
<tr>
<td>39Q</td>
<td>593</td>
<td>1001</td>
<td>691</td>
<td>940</td>
<td>537</td>
</tr>
<tr>
<td>39QCLQF</td>
<td>1259</td>
<td>1293</td>
<td>869</td>
<td>1214</td>
<td>1102</td>
</tr>
<tr>
<td>39QPML</td>
<td>1485</td>
<td>1525</td>
<td>1235</td>
<td>1432</td>
<td>1299</td>
</tr>
<tr>
<td>BBI</td>
<td>306</td>
<td>341</td>
<td>272</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KG</td>
<td>112</td>
<td>115</td>
<td>119</td>
<td>108</td>
<td>93</td>
</tr>
<tr>
<td>KGK</td>
<td>224</td>
<td>230</td>
<td>238</td>
<td>216</td>
<td>186</td>
</tr>
<tr>
<td>27KG</td>
<td>336</td>
<td>345</td>
<td>357</td>
<td>247</td>
<td>279</td>
</tr>
<tr>
<td>4Y</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>8Y</td>
<td>12</td>
<td>10</td>
<td>12</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>8R</td>
<td>33</td>
<td>26</td>
<td>51</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>K</td>
<td>112</td>
<td>115</td>
<td>119</td>
<td>108</td>
<td>93</td>
</tr>
<tr>
<td>KK</td>
<td>224</td>
<td>230</td>
<td>238</td>
<td>216</td>
<td>186</td>
</tr>
<tr>
<td>27K</td>
<td>336</td>
<td>345</td>
<td>357</td>
<td>324</td>
<td>279</td>
</tr>
<tr>
<td>FZX</td>
<td>6</td>
<td>5</td>
<td>7</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>SVZX</td>
<td>27</td>
<td>21</td>
<td>30</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>5CT</td>
<td>27</td>
<td>22</td>
<td>31</td>
<td>24</td>
<td>25</td>
</tr>
<tr>
<td>8CT</td>
<td>44</td>
<td>35</td>
<td>49</td>
<td>39</td>
<td>40</td>
</tr>
<tr>
<td>14CT</td>
<td>94</td>
<td>75</td>
<td>105</td>
<td>84</td>
<td>85</td>
</tr>
<tr>
<td>5CTZ</td>
<td>19</td>
<td>16</td>
<td>18</td>
<td>21</td>
<td>17</td>
</tr>
<tr>
<td>8CTZ</td>
<td>31</td>
<td>27</td>
<td>34</td>
<td>28</td>
<td>24</td>
</tr>
<tr>
<td>14CTZ</td>
<td>66</td>
<td>57</td>
<td>64</td>
<td>72</td>
<td>605</td>
</tr>
<tr>
<td>6G</td>
<td>38</td>
<td>30</td>
<td>42</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>9G</td>
<td>64</td>
<td>51</td>
<td>71</td>
<td>57</td>
<td>58</td>
</tr>
<tr>
<td>5H</td>
<td>26</td>
<td>28</td>
<td>39</td>
<td>47</td>
<td>48</td>
</tr>
<tr>
<td>9H</td>
<td>51</td>
<td>42</td>
<td>59</td>
<td>42</td>
<td>48</td>
</tr>
<tr>
<td>13HZ</td>
<td>N/A</td>
<td>100</td>
<td>113</td>
<td>119</td>
<td>123</td>
</tr>
<tr>
<td>16QCLQF</td>
<td>307</td>
<td>315</td>
<td>364</td>
<td>306</td>
<td>278</td>
</tr>
<tr>
<td>16QPML</td>
<td>307</td>
<td>315</td>
<td>364</td>
<td>330</td>
<td>299</td>
</tr>
<tr>
<td>25DN</td>
<td>N/A</td>
<td>57</td>
<td>62</td>
<td>52</td>
<td>48</td>
</tr>
<tr>
<td>40DN</td>
<td>N/A</td>
<td>1055</td>
<td>115</td>
<td>104</td>
<td>94</td>
</tr>
</tbody>
</table>
Particulate Removal Element Media Selection Considerations

Selecting the proper Schroeder media for your application is easy if you follow these simple guidelines:

Step 1. Remember that the key to cost effective contamination control is to maintain the system’s cleanliness at the tolerance level of the system’s most sensitive component. So, the first step is to identify the most sensitive component.

Step 2. Determine the desired cleanliness level (ISO Code) for that component by referring to Table 3 on page 13 or by contacting the component manufacturer directly.

Step 3. Identify the Schroeder filter medium referencing Table 6 that will meet or exceed the desired cleanliness level.

Step 4. Remember to regularly check the effectiveness of the selected media through the use of contamination monitoring equipment.

Table 6. Schroeder Element Media Recommendations

<table>
<thead>
<tr>
<th>Desired Cleanliness Levels (ISO Code)</th>
<th>Schroeder Media</th>
</tr>
</thead>
<tbody>
<tr>
<td>20/18/15-19/17/14</td>
<td>Z25</td>
</tr>
<tr>
<td>19/17/14-18/16/13</td>
<td>Z10</td>
</tr>
<tr>
<td>18/16/13-15/13/10</td>
<td>Z5</td>
</tr>
<tr>
<td>15/13/10-14/12/9</td>
<td>Z3</td>
</tr>
<tr>
<td>14/12/9-13/11/8</td>
<td>Z1</td>
</tr>
</tbody>
</table>

Filter element life varies with the dirt holding capacity of the element and the amount of dirt introduced into the circuit. The rate of this ingression in combination with the desired cleanliness level should be considered when selecting the media to be used for a particular application. Table 7 provides recommendations accordingly.

The amount of dirt introduced can vary from day to day and hour to hour, generally making it difficult to predict when an element will become fully loaded. This is why we recommend specifying a Dirt Alarm®.

Schroeder’s-designed Dirt Alarm® provides a vital measure of protection for your system by indicating when the filter element needs to be changed or cleaned. Schroeder filters are available with visual, electrical and electrical-visual combination Dirt Alarm®. These indicators may also be purchased as separate items. For more information on Schroeder Dirt Alarm®, see Appendix A.

Table 7. Recommended Schroeder Media to Achieve Desired Cleanliness Levels Based on Ingression Level

<table>
<thead>
<tr>
<th>Desired Cleanliness Levels (ISO Code)</th>
<th>Ingression Rate</th>
<th>Schroeder Element Medium</th>
</tr>
</thead>
<tbody>
<tr>
<td>20/18/15</td>
<td>High</td>
<td>Z25</td>
</tr>
<tr>
<td>19/17/14</td>
<td>Low</td>
<td>Z25</td>
</tr>
<tr>
<td>18/16/13</td>
<td>Low</td>
<td>Z10</td>
</tr>
<tr>
<td>15/13/10</td>
<td>Low</td>
<td>Z5</td>
</tr>
<tr>
<td>14/12/9</td>
<td>High</td>
<td>Z3</td>
</tr>
<tr>
<td>13/11/8</td>
<td>Low</td>
<td>Z1</td>
</tr>
</tbody>
</table>
Prepare for, Tier 4 Off-Highway Engines Requirements
- Fuel injectors operate at high pressures to achieve emissions standards (30,000+ psi)
- Injector nozzles openings as small as 2 µm (for perspective 40 µm is visibility limit with human eye)
- Requirements for diesel fuel based on ISO Code cleanliness levels (18/16/13 storage, 12/9/6 or better at the injector)
- Requirements for water removal from fuel (levels down to 50 ppm)

Schroeder’s Bulk Diesel Filters and systems provide exceptional, ≥ 99.5% single-pass diesel purification to protect the latest in high pressure, common-rail, fuel injection systems that require fuel with particulate filtration down to 1 µm.

Why is highly efficient particulate and coalescing fuel filtration a critical requirement in today’s application?
- 2004: U.S. Environmental Protection Agency announced rules to reduce emissions from on- and off-road diesel engines by more than 90% over 11 years (Tier 3 & 4)
- 2011: Ultra Low Sulfur Diesel (ULSD15) became standard for all diesel fuel in the US, Canada & Europe
- 2013-2014 & Beyond: Tier 4 and Tier 4 final Engines are being shipped with fuel cleanliness requirements and enhanced water level removal needs
- Fuel cleanliness and ppm levels that were acceptable in Tier 3 and lower engines will most likely cause significant issues in today’s Tier 4 Final engines. Injector manufacturers advise: No warranty coverage due to improper fuel filtration

Application Introduction: Better Bulk Fuel Filtration is now a critical competence in achieving cost effective engine performance
Coalescing filtration can be a highly effective method to remove water from diesel fuels. Water is typically introduced into the fuel supply by condensation or water ingression during delivery or transfer. Water in a vehicle’s fuel system can reduce lubricity causing seizure of close tolerance parts, increased TAN, reduced lubricity at the injector, lower burn efficiency, reduced power or emissions violations and corrosion. Water in fuel storage tanks causes rust and promotes microbial growth. Microbial growth in fuel storage systems begins in free water at the tank bottom and can quickly migrate through the fuel. In warm weather, microbial “blooms” can quickly overwhelm and bypass fuel filters causing contamination to reach the fuel injectors. Today’s high pressure 36,000+ psi (2,800bar) common-rail, Tier 4 fuel injection systems have tighter tolerances and require water removal, less than 200 ppm to minimize wear related failures.
Bulk Diesel Coalescing Filtration Fundamentals

Application Introduction: Better Bulk Fuel Filtration is now a critical competence in achieving cost effective engine performance

Coalescing filtration can be a highly effective method to remove water from diesel fuels. Water is typically introduced into the fuel supply by condensation or water ingress during delivery or transfer. Water in a vehicle’s fuel system can reduce lubricity causing seizure of close tolerance parts, increased TAN, reduced lubricity at the injector, lower burn efficiency, reduced power or emissions violations and corrosion. Water in fuel storage tanks causes rust and promotes microbial growth. Microbial growth in fuel storage systems begins in free water at the tank bottom and can quickly migrate through the fuel. In warm weather, microbial “blooms” can quickly overwhelm and bypass fuel filters causing contamination to reach the fuel injectors. Today’s high pressure 36,000+ psi (2,800bar) common-rail, Tier 4 fuel injection systems have tighter tolerances and require water removal, less than 200 ppm to minimize wear related failures.

We test to SAE J1488 and ISO16332 - Fuel Standards. Below are examples of Schroeder tests and results of third-party product testing.

SAE J1488 is a fuel/water separation test with continuous water injection of .25% of the fuel flow rate. The test is performed with the water injected upstream (suction side) of the pump resulting in emulsified or finely dispersed water droplets.

SAE J11839 is a fuel/water separation test with continuous water injection of .25% of the fuel flow rate. The test is performed with the water injected downstream (pressure side) of the pump resulting in larger water droplets.

ISO 16332 is a fuel/water separation test with continuous water injection of .15% of the fuel flow rate. The test is performed with the water injected either downstream (pressure side) or upstream (suction side) of the pump resulting in emulsified/finely dispersed or larger water droplets, respectively.

Third-party testing show the performance of the Schroeder ICF rated for 16 gpm and a competitor product rated for 25 gpm at a test flow rate of 10 gpm. Schroeder product is fully synthetic where competitor's is a combination of systolic and cellulose. As the test goes on, the competitor's element loses separation efficiency. The result is a clear sump sample (Figure 3) versus a cloudy sump sample with fuel and water (Figure 2).

![Figure 1](image1.png)
Figure 1
Test Circuit Sample of UNFILTERED Sump Discharge:

(Tested without the coalescing element installed at 16 gpm flow) 0% removal efficiency and the unfiltered sump sample is milky and filled with fuel.

![Figure 2](image2.png)
Figure 2
Competitive Fuel Filter:

Sample of Drain Discharge after Coalescing filtration at 16 gpm at an average efficiency of 61%. The sample is a mixture of fuel and water due to poor separation efficiency.

![Figure 3](image3.png)
Figure 3
Schroeder ICF Coalescing Element:

Water removal performance at 25 gpm is 97.7% efficiency and as a result the sump drain output sample is clean and free of visible fuel. NOTE: for comparison, competitor’s filter efficiency at only 16 gpm is 61% and testing of the competitors unit at 25 gpm provided downstream results that were too saturated to measure on a Karl Fischer, showing reduced separation efficiency.
Bulk Diesel Coalescing Filtration Fundamentals

Independent Testing (Sept. 2014) at Southwester Research Institute® (SWR)
- SAE J1488
- In-line fuel coalescing filter (ICF)
- Flow rate 16 gpm
- Water feed rate: 152 ml/min (2,500 ppm)
- Test Duration 150 minutes

Schroeder Coalescing Technology: the Difference in Performance
Equipment:
- MPT Multipurpose Stand
- 10 Gallon Reservoir
- Coulometric Karl Fischer Unit
- Controlled Environmental Conditions
Flow Rate 10 gpm

<table>
<thead>
<tr>
<th>Type</th>
<th>% Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>ULSD</td>
<td>95.4%</td>
</tr>
<tr>
<td>Biodiesel (Simulated by SwRI)</td>
<td>98.1%</td>
</tr>
</tbody>
</table>

ICF vs Competition Efficiency Testing
Diesel Fuel Filtration in the Engine—Why it Matters

- Bacterial Growth
- Blocked Fuel Filter
- Clogged Fuel Injectors
- Damaged Fuel Pump
- Oil Degradation/Leakages
- Seal Failures
- Unseen Particles
Features and Benefits

- Patent-pending, three-phase, particulate and fuel/water separation media technology
- A revolutionary element designed for the highest single-pass water and particulate removal efficiencies in today’s ultra-low sulfur diesel (ULSD) fluids
- Protects expensive Tier III and Tier IV engine components against failures caused by particulate and water transferred from bulk fuel tanks to the vehicle
- Allows users to achieve or exceed the particulate and water removal specifications of the injection system OEMs
- Previously acceptable industry standard products no longer provide the high-efficiency separation needed in today’s ULSD fluids
- Housing design allows for field upgrade of any available option
- Schroeder Anti-Static Pleat® Media (ASP) is standard for all coalescing elements
- Pressure bypass indicator setting at 36 psi, with bypass valve cracking at 40 psi, allows for early indication before bypass of filter for advanced maintenance notice
- In applications >32°F (0°C) complete automation is achievable with fail-safe auto-drain feature using a remote 5 gallon (18L) or 20 gallon (75L) sump with alarm and auto shutdown
- Now available as a UL Certified, marine specific, fuel filter (ICFM)

Markets

- INDUSTRIAL
- MOBILE VEHICLES
- MARINE
- MINING TECHNOLOGY
- AGRICULTURE
- POWER GENERATION
- COMMON RAIL INJECTOR SYSTEMS
- FLEET
- RAILROAD
- BULK FUEL FILTRATION
In-Line Bulk Fuel Coalescing Filter

*Coalescing Elements Patent-Pending

<table>
<thead>
<tr>
<th>Specifications</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow Rating:</td>
<td>Up to 16 gpm (60 L/min) for ULSD15</td>
</tr>
<tr>
<td>Inlet/Outlet Connection:</td>
<td>1½" NPTF Standard, -16 (ORB) SAE J1926 Optional</td>
</tr>
<tr>
<td>Max. Operating Pressure:</td>
<td>150 psi (10 bar)</td>
</tr>
<tr>
<td>Min. YIELD Pressure:</td>
<td>450 psi (31 bar)</td>
</tr>
<tr>
<td>Rated Fatigue Pressure:</td>
<td>90 psi (6 bar), per NFPA T2.6.1-2005</td>
</tr>
<tr>
<td>Temp. Range:</td>
<td>32°F to 165°F (0°C to 74°C) standard and AWD option</td>
</tr>
<tr>
<td></td>
<td>-20°F to 165°F (-29°C to 74°C) H option</td>
</tr>
<tr>
<td>Bypass Indication:</td>
<td>36 psi (2.5 bar) (Lower indication options available)</td>
</tr>
<tr>
<td>Bypass Valve Cracking:</td>
<td>40 psi (2.8 bar)</td>
</tr>
<tr>
<td>Porting Head/Cap:</td>
<td>Aluminum - Coating Option see Box 7</td>
</tr>
<tr>
<td>Element Bowl:</td>
<td>Steel - Epoxy Paint w/ High-phos Electroless Nickel Plating (Standard)</td>
</tr>
<tr>
<td>Filter Housing Weight:</td>
<td>15 lbs (6.8 kg) - Base unit without options or element</td>
</tr>
<tr>
<td>Element Change Clearance:</td>
<td>Access from top (remove cap) - 18" (457.2 mm)</td>
</tr>
<tr>
<td></td>
<td>Access from below (remove bowl) - 2.5" (63.5 mm)</td>
</tr>
<tr>
<td>Housing Sump:</td>
<td>32 oz. (0.95 L)</td>
</tr>
<tr>
<td>Optional:</td>
<td>External water sump and non-immersion heater (power 120VAC, 235W),</td>
</tr>
<tr>
<td></td>
<td>Sight glass, bracket, water in fuel sensor w/ or w/out remote mount light</td>
</tr>
<tr>
<td></td>
<td>and 6' lead</td>
</tr>
</tbody>
</table>

Note: For other electrical options, contact factory
Element sold separately
In-Line Bulk Fuel Coalescing Filter

Coalescing Elements Patent-Pending

Pressure Drop Information Based on Flow Rate and Viscosity

\[\Delta P_{\text{element}} = \text{flow} \times \text{element} \times \Delta P \text{ factor} \times \text{viscosity factor} \]

Example: \(\Delta P \) factors @ 37 SUS (3 cSt).
- \(C184Z3V = 0.2 \)
- \(C184Z5V = 0.2 \)
- \(C184Z7VE = 0.09 \)

If working in units of bars & L/min, divide above factor by 54.9.
Viscosity factor: Divide viscosity by 37 SUS (3 cSt).

Notes

Exercise: Determine \(\Delta P \) at 16 gpm (60 L/min) for ICFVP24LEP

Solution:
- \(\Delta P_{\text{housing}} = 2.05 \) psi \(= 0.14 \) bar
- \(\Delta P_{\text{coalescing element}} = 16 \times 0.2 = 3.2 \) psi \(= 0.22 \) bar
- \(\Delta P_{\text{total}} = 2.05 + 3.2 = 5.25 \) psi \(= 0.36 \) bar

Coalescing Element

<table>
<thead>
<tr>
<th>Coalescing Element</th>
<th>Recommended Flow</th>
<th>Single Pass Water Removal Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>C184Z5V</td>
<td>16 gpm</td>
<td>(\geq 99.5%)</td>
</tr>
<tr>
<td>C184Z3V</td>
<td>16 gpm</td>
<td>(\geq 99.5%)</td>
</tr>
<tr>
<td>C184Z7VE</td>
<td>16 gpm</td>
<td>Contact Factory for Element Data</td>
</tr>
</tbody>
</table>

Flow Direction: Inside Out

Element Nominal Dimensions: 4.0” (102 mm) O.D. x 18.5” (470 mm) long

*Schroeder Anti-Static Pleat Media (ASP®) is standard

*NOTE: Efficiency based on ULSD15 with 27 Dynes/cm surface tension and 0.25% (2500 ppm) water injection. Discharge water concentration of <100 ppm free and emulsified water.
NOTES: Water in fuel sensor (WIF) supplied w/ or w/out remote mount indicator light to show full filter housing sump

T Option = WIF sensor only w/out filter housing sump full indication light or control panel

I Option = WIF sensor w/ remote mount filter housing sump full indicator light and NEMA 4X control panel supplied

NOTES: Filter Sump Heater Control Panel dimension:
6.5" W x 5.5" H x 6.5" D
(165 W x 140 H x 165 D)

Automatic Water Drain Control Panel dimension:
10" W x 8" H x 12" D
(254 W x 203.20 H x 304.80 D)
*For use above 32°F (0°C) only

Electrical cable length (Control Panel to ICF): 4 ft. (1.22m)

Hose length for Automatic Water Drain feature (ICF to Tank): 6 ft. (1.83m)

All control panels "NEMA 4X" rated

Metric dimensions in ().

NOTES: Remote Tank dimension:
5 Gallon Tank: 22" W x 9.25" L x 7.125" H
(558.80 W x 234.95 L x 180.97 H)
20 Gallon Tank: 15" W x 11" L x 31" H
(381 W x 279.40 L x 787.40 H)

Power supply for tank high level LED light: 9 VDC (battery included) Supplied w/ 9 VDC terminal for customer wiring provided.

Metric dimensions in ().
In-Line Fuel Coalescing Filter

How to Build a Valid Model Number for a Schroeder ICF without element:

<table>
<thead>
<tr>
<th>BOX 1</th>
<th>BOX 2</th>
<th>BOX 3</th>
<th>BOX 4</th>
<th>BOX 5</th>
<th>BOX 6</th>
<th>BOX 7</th>
<th>BOX 8</th>
<th>BOX 9</th>
<th>BOX 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example: Note:

ICF V P24 L B S1 EP A AWD5 = ICFVP24LBSIEPAAWD5

NOTES:

For details on how to order the UL Listed ICFM, Contact Factory

Unless automatic drain option is specified, ICF units will come standard with manual drain

Coalescing element sold separately and selected below

If ordering the collection of options (Box 5, Box 6, Box 8, and Box 8. H) together, please contact factory

Box 2. Viton® is a registered trademark of DuPont Dow Elastomers

Box 6 and 7. Only two boxes that allow combination of options (S + I or EP + A)

Box 8. Filter sump heater option only available when ordered w/out automatic water drain (AWD5 or AWD20)

Box 9. AWD fail safe is shown on page 25 (ICF)

Element Part Number Selection

- Element Nominal Dimensions: 4.0” (102 mm) O.D. x 18.5” (470 mm) long

Fuel Oils

- ULSD15, low sulfur diesel and high sulfur diesel
- Biodiesel blends
- Synthetic diesel and blends
- No. 2 fuel oil and heating oil
Applications

Features and Benefits

- Fuel dispensing and transfer filtration solution with choice of integral or blocked bypass to suit application
- Allows users to achieve or exceed the manufacturer requirements for particulate and water content in diesel fuel
- Designed with integrated particulate removal pre-filtration for downstream coalescing filter protection and extended element life
- Routine element change only needed on particulate pre-filter, which saves time and money
- Updated BDF design incorporates GHPF and GHCF filter housings for a reduced cost, improved function, and increased capacity
- Patented GeoSeal® element sealing interface ensures quality element replacement
- Particulate filtration available at 1 or 3 microns utilizing synthetic Z-Media® element for better contamination control
- Patented, three-phase, particulate and fuel/water separation media technology
- Housing design allows for field upgrade of any available option
- Complete automation is achievable with a water and fuel sensor and fail-safe auto-drain feature using a remote 5 gallons (18L) or 20 gallons (75L) sump with alarm and auto shutdown in application >32°F (0°C)
- Easy mounting and element service

Markets

Model no. of filter in photograph is: BDF111GGZ3CG5VDS

Model no. of filter in photograph is: BDF211GGZ3CG5VDS
Bulk Diesel Filter

Flow Rating:
- BDF1: up to 25 gpm (95 L/min)
- BDF2: up to 50 gpm (189 L/min)

Inlet/Outlet Connection:
-24 (ORB) SAE J1926

Max. Operating Pressure:
150 psi (10 bar)

Temp. Range:
-20°F to 225°F (-29°C to 107°C) w/ optional water sump heater, 32°F to 225°F (0°C to 107°C) without heater, with standard features and AWD options

Bypass Indication:
- Particulate Filter: 35 psi (2.4 bar)
- Coalescing Filter: 35 psi (2.4 bar)

Bypass Valve Cracking:
- Particulate Filter: 40 psi (2.8 bar)
- Coalescing Filter: 40 psi (2.8 bar)

Materials of Construction:
- Particulate Filter & Coalescing Filter: Porting Head: Cast Aluminum, Anodized
- Coalescing Filter Only: Element Case: Aluminum, Anodized

Weight:
- BDF1: 46.5 lbs
- BDF2: 89 lbs

Element Change Clearance:
- Particulate Filter: 2” (51 mm)
- Coalescing Filter: 4.5” (114 mm)

Opt. Water Sump Heater:
- 120VAC, 1 x 74W (BDF1) / 2 x 74W (BDF2)

Opt. Visual Electrical Indicator:
- 120VAC
Bulk Diesel Filter

Particulate Elements

<table>
<thead>
<tr>
<th>Particulate Elements</th>
<th>DHCl(g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11GGZ1V</td>
<td>172</td>
</tr>
<tr>
<td>11GGZ3V</td>
<td>148</td>
</tr>
</tbody>
</table>

Coalescing Element

<table>
<thead>
<tr>
<th>Coalescing Element</th>
<th>Max Flow</th>
<th>Single Pass Water Removal Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>C125G2SV</td>
<td>25 gpm</td>
<td>≥ 95%</td>
</tr>
</tbody>
</table>

Filtration Ratio per ISO 16889

Using APC calibrated per ISO 11171

<table>
<thead>
<tr>
<th>Particulate Elements</th>
<th>DHCl(g)</th>
<th>(\beta_c \geq 200)</th>
<th>(\beta_c \geq 1000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11GGZ1V</td>
<td>172</td>
<td><4.0</td>
<td>4.2</td>
</tr>
<tr>
<td>11GGZ3V</td>
<td>148</td>
<td><4.0</td>
<td>4.8</td>
</tr>
</tbody>
</table>

Note:

- Based on ULSD15 with 27 Dynes/cm surface tension and 0.25% (2500 ppm) water injection

Particulate Element

- **Flow Direction:** Outside In
- **Element Nominal Dimensions:** 5.0" (27 mm) O.D. x 11" (279 mm) long

Coalescing Element

- **Flow Direction:** Inside Out
- **Element Nominal Dimensions:** 5.0" (27 mm) O.D. x 12" (305 mm) long

Dimensions shown are inches [millimeters] for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.
Bulk Diesel Filter

How to Build a Valid Model Number for a Schroeder BDF housing without element:

<table>
<thead>
<tr>
<th>BOX 1</th>
<th>BOX 2</th>
<th>BOX 3</th>
<th>BOX 4</th>
<th>BOX 5</th>
<th>BOX 6</th>
<th>BOX 7</th>
<th>BOX 8</th>
<th>BOX 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDF</td>
<td>1</td>
<td>11GGZ3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Example:

BDF 111GZ3CG5VD5

Filter Series

- BDF 1 = 25 gpm
- BDF 2 = 50 gpm

Flow Rate

- 11GGZ1 = 1 µm
- 11GGZ3 = 3 µm

Particulate Filtration

- Omit = 40 psi
- X = Blocked Bypass

Particulate Bypass

Coalescing Filtration

Coalescing Element

Options

- Omit = Included Sight Glass and Manual Water Drain Valves
- U = Downstream Test Point
- T = Water-In-Fuel (WIF) Sensor Only
- I = Light Indicator
- H = Coalescing Sump Heater
- S5 = 5 gal. Remote Tank
- S20 = 20 gal. Remote Tank
- AWD5 = Auto. Water Drain w/ 5 gal. Remote Tank
- AWD20 = Auto. Water Drain w/ 20 gal. Remote Tank

Fluid Compatibility

- ULSD15, low sulfur diesel and high sulfur diesel
- Biodiesel blends
- Synthetic diesel and blends
- No. 2 fuel oil and heating oil

Filtration Ratio per ISO 16889

Using APC calibrated per ISO 11171

<table>
<thead>
<tr>
<th>Particulate Elements</th>
<th>DHC(g)</th>
<th>(\beta_x (c) \geq 200)</th>
<th>(\beta_x (c) \geq 1000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11GGZ1V</td>
<td>172</td>
<td><4.0</td>
<td>4.2</td>
</tr>
<tr>
<td>11GGZ3V</td>
<td>148</td>
<td><4.0</td>
<td>4.8</td>
</tr>
</tbody>
</table>

Coalescing Element

Pressure Side Coalescing

- Max Flow: 25 gpm
- Single Pass Water Removal Efficiency: \(\geq 95\% \)

Particulate Element

- Flow Direction: Outside In
- Element Nominal Dimensions: 5.0" (27 mm) O.D. x 11" (279 mm) long

Coalescing Element

- Flow Direction: Inside Out
- Element Nominal Dimensions: 5.0" (27 mm) O.D. x 12" (305 mm) long

Note:

Based on ULSD15 with 27 Dynes/cm surface tension and 0.25% (2500) water injection
Application Introduction:

The BDA provides a high capacity water absorbing solution for diesel fuel in a familiar process filtration housing configuration. The BDA combines the high volume particulate filtration performance of a bag housing element with a high capacity water absorbent media to provide an economic solution for particulate and water removal in diesel fuel systems. The BDA can be used for dispensing or kidney-loop installations. The filter is designed for use with standard diesel fuel as well as bio-based blends.

Features and Benefits

- One housing and bag filter provides both high capacity particulate and water removal performance
- A particulate filtration rating of 10 µm is standard
- Housings are high quality stainless steel, CE Marked vessels
- A positive bag seating mechanism helps to minimize the risk of seal bypass
- Fixed legs with height and 360° rotational adjustment allow for various mounting options

Model no. of filter in photograph is: BDA-H-2-V-P32

Applications

- INDUSTRIAL
- MOBILE VEHICLES
- MARINE
- MINING TECHNOLOGY
- AGRICULTURE
- POWER GENERATION
- COMMON RAIL INJECTOR SYSTEMS
- FLEET
- RAILROAD
- BULK FUEL FILTRATION

Markets

- 132 or 265 L/min
- 35 or 70 gpm
- 145 psi
- 10 bar
In-Line Water Absorbing Diesel Fuel Filter

Filter Housing Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>BDAH1:</th>
<th>BDAH2:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Flow Rating:</td>
<td>35 gpm (132 L/min)</td>
<td>70 gpm (265 L/min)</td>
</tr>
<tr>
<td>Inlet/Outlet Connection:</td>
<td>2" NPTF</td>
<td>2" SAE 4-Bolt Flange Code 61</td>
</tr>
<tr>
<td>Max. Operating Pressure:</td>
<td>145 psi (10.3 bar)</td>
<td></td>
</tr>
<tr>
<td>Recommended Element Change</td>
<td></td>
<td>22 psi (1.5 bar)</td>
</tr>
<tr>
<td>Differential Pressure:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>**Max. Element Differential</td>
<td>55 psi (4 bar)</td>
<td></td>
</tr>
<tr>
<td>Pressure:**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature Range:</td>
<td>-20°F to 176°F (-29°C to 80°C)</td>
<td></td>
</tr>
<tr>
<td>Available Gauge Porting:</td>
<td>(2) ¼” BSP</td>
<td></td>
</tr>
<tr>
<td>Materials of Construction:</td>
<td>304 Stainless Steel</td>
<td></td>
</tr>
<tr>
<td>Weight:</td>
<td>BDAH1: 66 lbs. (30 kg)</td>
<td>BDAH2: 84 lbs. (38 kg)</td>
</tr>
<tr>
<td>Element Change Clearance:</td>
<td>Min. required 14” (356 mm)</td>
<td></td>
</tr>
</tbody>
</table>

Note: Elements sold separately

Diagram:

- **BDAH1:**
 - 4.61 [117]
 - 8.46 [215]
 - 7.28 [185]
 - 6.61 [168]
 - 4.92 [125]
 - 5 (10) equally spaced

- **BDAH2:**
 - 8.46 [215]
 - 29.44 [748]
 - 8.61 [219]
 - 11.9 [303]

Foot Pattern:

- IN

*Metric dimensions in ().
Dimensions shown are inches [millimeters] for general information and overall envelope size only.
For complete dimensions please contact Schroeder Industries to request a certified print.*
In-Line Water Absorbing Diesel Fuel Filter

<table>
<thead>
<tr>
<th>Water Absorbing Bag Element</th>
<th>Bag Housing Size</th>
<th>Micron Rating</th>
<th>Bag Element Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA210P1PW</td>
<td>Size 1</td>
<td>10 µm</td>
<td>7" (178 mm) O.D. x 17" (432 mm) long</td>
</tr>
<tr>
<td>FA210P2PW</td>
<td>Size 2</td>
<td>10 µm</td>
<td>7" (178 mm) O.D. x 32" (813 mm) long</td>
</tr>
</tbody>
</table>

Pressure Drop Information: $\Delta P_{\text{housing}} < 0.5$ psi

Pressure Drop Information Based on Flow Rate and Viscosity

Notes

No additional notes.
Fuel Compatibility

- ULSD15, low sulfur diesel and high sulfur diesel
- Biodiesel blends
- Synthetic diesel and blends
- No. 2 fuel oil and heating oil

Element Part Number Selection

Water Absorbing Element

<table>
<thead>
<tr>
<th>Water Absorbing Element</th>
<th>Bag Housing Size</th>
<th>Max Flow Rate (gpm/ L/min)</th>
<th>Micron Rating</th>
<th>Bag Element Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA21OP1PW</td>
<td>Size 1</td>
<td>35 (132)</td>
<td>10 µm</td>
<td>7” (178 mm) O.D. x 17” (432 mm) long</td>
</tr>
<tr>
<td>FA21OP2PW</td>
<td>Size 2</td>
<td>70 (265)</td>
<td>10 µm</td>
<td>7” (178 mm) O.D. x 32” (813 mm) long</td>
</tr>
</tbody>
</table>

How to Build a Valid Model Number for a Schroeder BDFA housing without element:

- **BOX 1**: Filter Series
- **BOX 2**: Product Configuration
- **BOX 3**: Bag Element Size
- **BOX 4**: Housing Seal Material
- **BOX 5**: Porting
- **BOX 6**: Filter Indicator

Example: BDAH1VP32DPG

Notes: One option per box.

Bag Filters sold separately and are listed below

- **Box 5**
 - Porting: P32 = 2” NPTF
 - F32 = 2” SAE 4-Bolt Flange, Code 61
 - B32 = 2” BSPF

- **Box 6**
 - Filter Indicator: Omit = None
 - DPG = Differential Pressure Gauge

BDA

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 6</td>
<td></td>
</tr>
<tr>
<td>BDA – – – – –</td>
<td>H V P32 DPG</td>
</tr>
</tbody>
</table>

Example: BDAH1VP32DPG
GeoSeal® High-Flow Particulate Filter

Applications

Features and Benefits

- Diesel fuel particulate filter for dispensing, transfer or polishing filtration applications
- Uses patented GeoSeal® elements
- All-aluminum filter housing is fully compatible with diesel and biodiesel
- Minimal clearance needed for element service, ideal for enclosure installations
- Cartridge style element improves performance and reduces waste compared to spin-on solutions
- Port to port and mounting pattern dimensions match standard spin-on assembly

Model No. of filter in photograph is: GHPF11GGZ3S24D3R

Filter Housing Specifications

- Flow Rating: Up to 100 gpm (380 L/min)
- Max. Operating Pressure: 150 psi (10.3 bar)
- Min. Yield: 2600 psi (179 bar)
- Temp. Range: -20°F to 225°F (-29°C to 107°C)
- Bypass Setting: Cracking: 40 psi (2.8 bar)
- Porting Head: Cast Aluminum, Anodized
- Element Case: Aluminum, Anodized
- Weight of GHPF: 7.64 lbs. (3.47 kg)
- Element Change Clearance: 2" (51 mm)
GeoSeal® High-Flow Particulate Filter

Element Performance Information

<table>
<thead>
<tr>
<th>Media Type</th>
<th>Element</th>
<th>$\beta_{(c)} \geq 200$</th>
<th>$\beta_{(c)} \geq 1000$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditional</td>
<td>11GGZ1V</td>
<td><4.0</td>
<td>4.5</td>
</tr>
<tr>
<td>Excellement®</td>
<td>11GGZ3V</td>
<td>4.6</td>
<td>5.8</td>
</tr>
<tr>
<td>Z-Media®</td>
<td>11GGZ5V</td>
<td>5.9</td>
<td>7.8</td>
</tr>
<tr>
<td></td>
<td>11GGZ10V</td>
<td>11.4</td>
<td>13.2</td>
</tr>
<tr>
<td></td>
<td>11GGZ25V</td>
<td>15.8</td>
<td>17.5</td>
</tr>
</tbody>
</table>

Filtration Ratio per ISO 16889
Using APC calibrated per ISO 11171

Dirt Holding Capacity

<table>
<thead>
<tr>
<th>Media Type</th>
<th>Element</th>
<th>DHC (gm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditional</td>
<td>11GGZ1V</td>
<td>172</td>
</tr>
<tr>
<td>Excellement®</td>
<td>11GGZ3V</td>
<td>148</td>
</tr>
<tr>
<td>Z-Media®</td>
<td>11GGZ5V</td>
<td>174</td>
</tr>
<tr>
<td></td>
<td>11GGZ10V</td>
<td>165</td>
</tr>
<tr>
<td></td>
<td>11GGZ25V</td>
<td>164</td>
</tr>
</tbody>
</table>

Element Collapse Rating: 150 psid (10.3 bar) for standard and non-bypassing elements
Flow Direction: Outside In
Element Nominal Dimensions: 11GG: 5" (127 mm) O.D. x 11" (305 mm) long

Metric dimensions in ().
Dimensions shown are inches [millimeters] for general information and overall envelope size only.
For complete dimensions please contact Schroeder Industries to request a certified print.

SCHROEDER INDUSTRIES | FUEL FILTRATION
GeoSeal® High-Flow Particulate Filter

Diesel Fuel and Biodiesel (B100).
For other Distillate Petroleum, Contact Factory.

<table>
<thead>
<tr>
<th>Pressure</th>
<th>Series</th>
<th>Element Part No.</th>
<th>Element selections are predicated on the use of 37 SUS (3 cSt) Diesel Fuel and Biodiesel (B100), SAE-24 porting, and a 40 psi (2.8 bar) bypass valve.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Z-Media®</td>
<td>11GGZ1V</td>
<td>11GGZ1V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11GGZ3V</td>
<td>11GGZ3V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11GGZ5V</td>
<td>11GGZ5V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11GGZ10V</td>
<td>11GGZ10V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11GGZ25V</td>
<td>11GGZ25V</td>
</tr>
</tbody>
</table>

Flow (gpm) (L/min)

<table>
<thead>
<tr>
<th>Flow</th>
<th>0</th>
<th>20</th>
<th>40</th>
<th>60</th>
<th>80</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>gpm</td>
<td>0</td>
<td>50</td>
<td>150</td>
<td>250</td>
<td>380</td>
<td></td>
</tr>
</tbody>
</table>

Shown above are the elements most commonly used in this housing.

\[\Delta P_{\text{housing}} \]

\[\Delta P_{\text{element}} = \text{flow} \times \text{element } \Delta P \text{ factor } \times \text{viscosity factor} \]

El. \(\Delta P \) factors @ 37 SUS (3 cSt):

- 11GGZ1V 0.07
- 11GGZ3V 0.05
- 11GGZ5V 0.05
- 11GGZ10V 0.05
- 11GGZ25V 0.04

If working in units of bars & L/min, divide above factor by 54.9.

Viscosity Factor: Divide viscosity by 37 SUS (3 cSt).

OF = Contact factory.

\[\Delta P_{\text{filter}} = \Delta P_{\text{housing}} + \Delta P_{\text{element}} \]

Exercise:
Determine \(\Delta P \) at 80 gpm (303 L/min) for GHPF11GGZ3VS24D5R using 37 SUS (3 cSt) fluid.

\[\Delta P_{\text{housing}} = 6.0 \text{ psi [0.41 bar]} \]
\[\Delta P_{\text{element}} = 80 \times 0.05 \times (37+37) = 4.0 \text{ psi} \]
\[\text{or} \]
\[= [303 \times (0.05+54.9) \times (3+3) = 0.28 \text{ bar]} \]
\[\Delta P_{\text{total}} = 6.0 + 4.0 = 10.0 \text{ psi} \]
\[\text{or} \]
\[= [0.41 + 0.28 = 0.69 \text{ bar]} \]
How to Build a Valid Model Number for a Schroeder GHPF:

BOX 1: Filter Series
- **GHPF**

BOX 2: Element Length & Series
- **11GG**

BOX 3: Element Media
- **Z = Excellement® Z-Media® (synthetic)**

BOX 4: Micron Rating
- **1 = (1 µm, Z media)**
- **3 = (3 µm, Z media)**
- **5 = (5 µm, Z media)**
- **10 = (10 µm, Z media)**
- **25 = (25 µm, Z media)**

BOX 5: Element Seal Material
- **V = Viton®**

BOX 6: Bypass Setting
- **Omit = 40 psid**

BOX 7: Inlet Port
- **S24 = SAE-24**
- **P24 = 1.5” NPTF**

BOX 8: Dirt Alarm® Options
- **Visual**
- **D5 = Visual pop-up w/manual reset**

BOX 9: Indicator Orientation
- **R = Right Side**
- **L = Left Side**

BOX 10: Options
- **Omit = None**
- **U = Downstream Test Point**

Example: GHPF11GGZ3-VS24D5 (NOTE: One option per box)

NOTES:

Box 2. Replacement element part numbers are a combination of Boxes 2, 3, 4 and 5.

Box 9. As viewed in the direction of the fluid flow from inlet to outlet.
GeoSeal® High-Flow Coalescing Filter

Applications

- Diesel fuel coalescing filter for dispensing, transfer or polishing filtration applications
- Uses patented GeoSeal® elements
- All-aluminum filter housing is fully compatible with diesel and biodiesel
- Minimal clearance needed for element service, ideal for enclosure installations
- Cartridge style element improves performance and reduces waste compared to spin-on solutions
- A compact design with reduced dimensions compared to similar cartridge filter and spin-on solutions on the market

Model No. of filter in photograph is: GHCFCG5VS24D5RTH

Flow Rating: Up to 25 gpm (95 L/min)
Max. Operating Pressure: 150 psi (10.3 bar)
Min. Yield: 1189 psi (82 bar)
Temp. Range: 32°F to 225°F (0°C to 107°C) Standard; -20°F to 225°F (-29°C to 107°C) Heater Option
Bypass Setting: 40 psi (2.8 bar)
Porting Head: Cast Aluminum, Anodized
Element Case: Aluminum, Anodized
Sump: Cast Aluminum, Anodized
Weight of GHCF: 19.45 lbs. (8.82 kg)
Element Change Clearance: 4.5” (114 mm)

Markets

- Industrial
- Mobile Vehicles
- Marine
- Mining Technology
- Agriculture
- Power Generation
- Common Rail Injector Systems
- Fleet
- Railroad
- Bulk Fuel Filtration

Filter Housing Specifications

- Flow Rating: 25 gpm (95 L/min)
- Max. Operating Pressure: 150 psi (10.3 bar)
- Min. Yield: 1189 psi (82 bar)
- Temp. Range: 32°F to 225°F (0°C to 107°C) Standard; -20°F to 225°F (-29°C to 107°C) Heater Option
- Bypass Setting: 40 psi (2.8 bar)
- Porting Head: Cast Aluminum, Anodized
- Element Case: Aluminum, Anodized
- Sump: Cast Aluminum, Anodized
- Weight of GHCF: 19.45 lbs. (8.82 kg)
- Element Change Clearance: 4.5” (114 mm)
GeoSeal® High-Flow Coalescing Filter

Metric dimensions in ().
Dimensions shown are inches [millimeters] for general information and overall envelope size only.
For complete dimensions please contact Schroeder Industries to request a certified print.

<table>
<thead>
<tr>
<th>Coalescing Element</th>
<th>Recommended Flow</th>
<th>Single Pass Water Removal Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>C125GZ5V</td>
<td>25 gpm</td>
<td>> 95%</td>
</tr>
</tbody>
</table>

Flow Direction: Inside Out

Element Nominal Dimensions: 5” (127 mm) O.D. x 12” (305 mm) long

Element Collapse Rating: 150 psid (10.3 bar) for standard and non-bypassing elements

*NOTE: Efficiency based on ULSD15 with 27 Dynes/cm surface tension and 0.25% (2500 ppm) water injection. Discharge water concentration of <100 ppm free and emulsified water.

Diesel Fuel and Biodiesel (B100).
For other Distillate Petroleum, Contact Factory.
GeoSeal® High-Flow Coalescing Filter

Coalescing Elements Patent-Pending

\[\Delta P_{\text{filter}} = \Delta P_{\text{housing}} + \Delta P_{\text{element}} \]

Pressure Drop Information Based on Flow Rate and Viscosity

\[\Delta P_{\text{element}} = \text{flow} \times \text{element} \times \Delta P \text{ factor} \times \text{viscosity factor} \]

Element \(\Delta P \) factors @ 37 SUS (3 cSt).

\[
\begin{align*}
C125GZSV &= 0.098 \\
\end{align*}
\]

if working in units of bars & L/min, divide above factor by 54.9.

Viscosity factor: Divide viscosity by 37 SUS (3 cSt).

Notes

Exercise: Determine \(\Delta P \) at 25 gpm (95 L/min) for GHCFCGSV

Solution:

\[
\begin{align*}
\Delta P_{\text{housing}} &= 1.6 \text{ psi} = [0.11 \text{ bar}] \\
\Delta P_{\text{coalescing element}} &= 25 \times 0.098 = 2.5 \text{ psi} [0.17 \text{ bar}] \\
\Delta P_{\text{total}} &= 1.6 + 2.5 = 4.1 \text{ psi} [0.28 \text{ bar}] \\
\end{align*}
\]

Coalescing Element

<table>
<thead>
<tr>
<th>Coalescing Element</th>
<th>Pressure Side Coalescing</th>
</tr>
</thead>
<tbody>
<tr>
<td>C125GZSV</td>
<td>Recommended Flow</td>
</tr>
<tr>
<td></td>
<td>25 gpm</td>
</tr>
</tbody>
</table>

Flow Direction: Inside Out

Element Nominal Dimensions: 5" (127 mm) O.D. x 12" (305 mm) long

SCHROEDER INDUSTRIES | FUEL FILTRATION
How to Build a Valid Model Number for a Schroeder GHCF:

<table>
<thead>
<tr>
<th>BOX 1</th>
<th>BOX 2</th>
<th>BOX 3</th>
<th>BOX 4</th>
<th>BOX 5</th>
<th>BOX 6</th>
<th>BOX 7</th>
<th>BOX 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>GHCF</td>
<td>CG5</td>
<td>V</td>
<td>S24</td>
<td>D5</td>
<td>R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example: NOTE: One option per box

| GHCF | CG5 | V | S24 | D5 | R | = GHCFCG5VS24D5R |

Filter Series

GHCF

Coalescing Filtration

CG5 = C125GZSV Coalescing Element

Element Seal Material

V = Viton®

Bypass Setting

Omit = 40 psid

X = Blocked Bypass

Inlet Port

S24 = SAE-24

P24 = 1.5” NPTF

Dirt Alarm® Options

Visual

D5 = Visual pop-up w/manual reset

Indicator Orientation

R = Right Side

L = Left Side

Sump Options

Omit = Sump Sight Glass (standard)

UU = Upstream & Downstream Test Point

T = WIF Sensor Only

I = WIF Sensor w/ Indicator Lamp

H = Sump Heat (74W)

S5 = 5 gal. Water Collection Tank

S20 = 20 gal. Water Collection Tank

AWD5 = Auto Water Drain w/ 5 gal. Collection Tank

AWD20 = Auto Water Drain w/ 20 gal. Collection Tank

NOTES:

Box 4. A blocked bypass requires the user to ensure a pressure relief is integrated into the system to prevent overpressuring the filter housings.

Box 7. As viewed in the direction of the fluid flow from inlet to outlet.

Box 8. Test point adapter replaces the blanking plug installed opposite the element indicator.
Bulk Diesel Fuel Coalescing Filter

Coalescing Elements Patent-Pending

Applications

- **Point of Use Fuel Dispensing**
- **Keel Fuel/Bulk Fuel Transfer**
- **Bulk Fuel Unloading**
- **Protection for High-Flow Fuel Injection Systems**
- **Bulk Tank In-Knee Loop/Recirculation**

Features and Benefits

- Patent-pending, three-phase, particulate and fuel/water separation media technology
- A revolutionary element designed for the highest single-pass water and particulate removal efficiencies in today's ultra-low sulfur diesel (ULSD) fluids
- Protects expensive Tier 3 and Tier 4 engine components against failures caused by particulate and water transferred from the bulk fuels tanks to the vehicle
- Allows users to achieve or exceed the particulate and water removal specifications of the injection system OEMs
- Previously acceptable industry standard products no longer provide the high-efficiency separation needed in today's ULSD fluids
- Complete automation is achievable with fail-safe auto-drain feature using a remote 5 gallon (18L) or 20 gallon (75L) sump with alarm and auto shutdown in application above 32°F (0°C)

Markets

- **Industrial**
- **Mobile Vehicles**
- **Marine**
- **Mining Technology**
- **Agriculture**
- **Power Generation**
- **Common Rail Injector Systems**
- **Fleet**
- **Railroad**
- **Bulk Fuel Filtration**

Model no. of filter in photograph is: QCFC5VS24VM

Application Introduction:

The Reason for Better Bulk Fuel Filtration

Advances in diesel engine fuel injection systems have been instrumental in complying with future emission standards. Higher pressure fuel injectors produce a finer mist of fuel, which burns cleaner. Common rail injection systems run at higher pressures and allow more injections per combustion cycle improving fuel economy, engine performance with lower noise. Higher pressure fuel injector systems have tighter tolerances and require the highest efficiency, single-pass particulate and water removal to minimize wear related failures.
Bulk Diesel Fuel Coalescing Filter

<table>
<thead>
<tr>
<th>Specifications</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow Rating:</td>
<td>Up to 70 gpm (265 L/min) for ULSD15</td>
</tr>
<tr>
<td>Inlet/Outlet Connection:</td>
<td>-24 (ORB) SAE J1926</td>
</tr>
<tr>
<td>Drain Connection Upper:</td>
<td>1/4" NPT Ball Valve</td>
</tr>
<tr>
<td>Drain Connection Lower:</td>
<td>1/4" NPT Ball Valve</td>
</tr>
<tr>
<td>Max. Operating Pressure:</td>
<td>100 psi (7 bar)</td>
</tr>
<tr>
<td>Min. Yield Pressure:</td>
<td>400 psi (27.6 bar) without sight gauge</td>
</tr>
<tr>
<td>Rated Fatigue Pressure:</td>
<td>Contact Factory</td>
</tr>
<tr>
<td>Temperature range:</td>
<td>-20°F to 165°F (-29°C to 74°C) Standard</td>
</tr>
<tr>
<td></td>
<td>32°F to 165°F (0°C to 74°C) with optional sight gauge</td>
</tr>
<tr>
<td>Bypass Indication:</td>
<td>25 psi (1.7 bar) (Lower indication options available)</td>
</tr>
<tr>
<td>Bypass Valve Cracking:</td>
<td>30 psi (2 bar)</td>
</tr>
<tr>
<td>Materials of Construction:</td>
<td>Porting Base: Anodized Aluminum</td>
</tr>
<tr>
<td></td>
<td>Element Bowl: Epoxy Paint w/ High-phos Electroless Nickel Plating (Standard)</td>
</tr>
<tr>
<td></td>
<td>Cap: Nickel Coated Ductile Iron</td>
</tr>
<tr>
<td>Weight:</td>
<td>155 Lbs. (77 kg)</td>
</tr>
<tr>
<td>Element Change Clearance:</td>
<td>33.8" (858 mm)</td>
</tr>
</tbody>
</table>

NOTES:

Element is sold with housing.
Bulk Diesel Fuel Coalescing Filter

Coalescing Element	Pressure Side Coalescing
Max Flow	Single Pass Water Removal Efficiency
C396Z5V	70 gpm

Note:
Based on ULSD15 with 27 Dynes/cm surface tension and 0.25% (2500 ppm) water injection

Flow Direction: Inside Out
Element Nominal Dimensions: 6.4” (163 mm) O.D. x 39.4” (1001 mm) long

\[\Delta P_{\text{housing}} = \text{Flow} \times \text{Element } \Delta P \text{ factor} \times \text{Viscosity factor} \]

\[\Delta P_{\text{element}} = \text{Flow} \times \text{Element } \Delta P \text{ factor} \times \text{Viscosity factor} \]

\[\Delta P_{\text{total}} = \Delta P_{\text{housing}} + \Delta P_{\text{element}} \]

Exercise: Determine \(\Delta P \) at 70 gpm (265 L/min) for QCFC5V24VM

Solution:
\[\Delta P_{\text{housing}} = 9.2 \text{ psi} = [0.63 \text{ bar}] \]
\[\Delta P_{\text{element}} = 70 \times 0.17 = 11.9 \text{ psi} = [0.82 \text{ bar}] \]
\[\Delta P_{\text{total}} = 9.2 + 11.9 = 21.1 \text{ psi} = [1.46 \text{ bar}] \]
How to Build a Valid Model Number for a Schroeder QCF Housing with Element:

<table>
<thead>
<tr>
<th>BOX 1</th>
<th>BOX 2</th>
<th>BOX 3</th>
<th>BOX 4</th>
<th>BOX 5</th>
<th>BOX 6</th>
<th>BOX 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>QCF</td>
<td>C</td>
<td>5</td>
<td>V</td>
<td>S24</td>
<td>VM</td>
<td></td>
</tr>
</tbody>
</table>

Example: **NOTE:** One option per box

= QCFC5VS24VM

<table>
<thead>
<tr>
<th>BOX 1</th>
<th>BOX 2</th>
<th>BOX 3</th>
<th>BOX 4</th>
<th>BOX 5</th>
<th>BOX 6</th>
<th>BOX 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filter Series</td>
<td>Coalescing Element Series</td>
<td>Element Media Type</td>
<td>Housing Sealing Material</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QCF</td>
<td>C = C396Z5V</td>
<td>5 = 5 μm Coalescing</td>
<td>V = Viton®</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BOX 5</th>
<th>BOX 6</th>
<th>BOX 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porting</td>
<td>Bypass Indicator Series</td>
<td>Additional Options</td>
</tr>
<tr>
<td>S24 = -24 (ORB) SAE J1926</td>
<td>VM = Visual Pop-Up w/ Manual Reset</td>
<td>Omit = None (standard)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H = Sump Heater</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S = Sight Gauge</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AWD5 = Auto water drain 5 gal tank w/ failsafe</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AWD20 = Auto water drain 20 gal tank w/ failsafe</td>
</tr>
</tbody>
</table>

NOTES:

- Optional sight gauge and AWD’s for use only >32° F (0°C)
- Box 4. Viton® is a registered trademark of DuPont Dow Elastomers
- Box 7. For automatic drain option, contact factory

Coalescing Element

<table>
<thead>
<tr>
<th>Pressure Side Coalescing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coalescing Element</td>
</tr>
<tr>
<td>C396Z5V</td>
</tr>
</tbody>
</table>

Note: Based on ULSD15 with 27 Dynes/cm surface tension and 0.25% (2500 ppm) water injection

- Flow Direction: Inside Out
- Element Nominal Dimensions: 6.4" (163 mm) O.D. x 39.4" (1001 mm) long

Fuel Oils

- ULSD15, low sulfur diesel and high sulfur diesel
- Biodiesel blends
- Synthetic diesel and blends
- No. 2 fuel oil and heating oil
Features and Benefits

■ Designed with integrated particulate removal pre-filtration for maximum coalescing filter element life in the downstream housing
■ Sized for high flow or highly contaminated fluid applications
■ Routine element change is only needed on Pre-filter (the particulate filter) which saves time and money
■ Patent-pending, three-phase, particulate and fuel/water separation media technology
■ A revolutionary element designed for the highest single-pass water and particulate removal efficiencies in today’s ultra-low sulfur diesel (ULSD) fluids
■ Protects expensive Tier 3 and Tier 4 engine components against failures caused by particulate and water transferred from the bulk fuel tank to the vehicle
■ Allows users to achieve or exceed the particulate and water removal specifications of the injection system OEMs
■ Previously acceptable industry standard products no longer provide the high-efficiency separation needed in today’s ULSD fluids
■ In applications >32°F (0°C) complete automation is achievable with a water in fuel sensor and fail-safe auto-drain feature using a remote 5 gallons (18L) or 20 gallons (75L) sump with alarm and auto shutdown
■ Schroeder Anti-Static Pleat Media (ASP®) is standard for all coalescing elements

Markets

- INDUSTRIAL
- MOBILE VEHICLES
- MARINE
- MINING TECHNOLOGY
- AGRICULTURE
- POWER GENERATION
- COMMON RAIL INJECTOR SYSTEMS
- FLEET
- RAILROAD
- BULK FUEL FILTRATION
Bulk Diesel Fuel Skid

Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow Rating</td>
<td>Up to 70 gpm (265 L/min) for ULSD15</td>
</tr>
<tr>
<td>Inlet/Outlet Connection</td>
<td>-24 (ORB) SAE J1926</td>
</tr>
<tr>
<td>Drain Connection Upper</td>
<td>1/4" NPT Ball Valve</td>
</tr>
<tr>
<td>Drain Connection Lower</td>
<td>1/4" NPT Ball Valve</td>
</tr>
<tr>
<td>Max. Operating Pressure</td>
<td>100 psi (7 bar)</td>
</tr>
<tr>
<td>Min. Yield Pressure</td>
<td>400 psi (27.6 bar) without sight gauge</td>
</tr>
<tr>
<td>Rated Fatigue Pressure</td>
<td>Contact Factory</td>
</tr>
<tr>
<td>Temperature range</td>
<td>-20°F to 165°F (-29°C to 74°C) sump heater option</td>
</tr>
<tr>
<td></td>
<td>32°F to 165°F (0°C to 74°C) standard or AWD option</td>
</tr>
<tr>
<td>Bypass Indication</td>
<td>Particulate Filter</td>
</tr>
<tr>
<td>(Lower indication options available)</td>
<td>Coalescing Filter</td>
</tr>
<tr>
<td>Bypass Valve Cracking</td>
<td>Particulate Filter</td>
</tr>
<tr>
<td></td>
<td>Coalescing Filter</td>
</tr>
<tr>
<td></td>
<td>Particulate Filter</td>
</tr>
<tr>
<td></td>
<td>Coalescing Filter</td>
</tr>
<tr>
<td>Materials of Construction</td>
<td>Particulate Filter</td>
</tr>
<tr>
<td></td>
<td>Coalescing Filter</td>
</tr>
<tr>
<td></td>
<td>Porting Base: Anodized Aluminum</td>
</tr>
<tr>
<td></td>
<td>Porting Base: Anodized Aluminum</td>
</tr>
<tr>
<td></td>
<td>Element Bowl: Epoxy Paint w/ High-phos Electroless Nickel Plating (Standard)</td>
</tr>
<tr>
<td></td>
<td>Element Bowl: Epoxy Paint w/ High-phos Electroless Nickel Plating (Standard)</td>
</tr>
<tr>
<td></td>
<td>Cap: Plated Steel</td>
</tr>
<tr>
<td></td>
<td>Cap: Plated Steel</td>
</tr>
<tr>
<td>Weight</td>
<td>441 Lbs. (200 kg)</td>
</tr>
<tr>
<td>Element Change Clearance</td>
<td>33.8" (858 mm)</td>
</tr>
</tbody>
</table>

Notes

Elements are sold with the housing. Metric dimensions in ().

Dimensions shown are inches [millimeters] for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.
Particulate Elements	DHC	$\beta_x (c) \geq 200$	$\beta_x (c) \geq 1000$
39QPMLZ1V | 1485 grams | <4.0 | 4.2
39QPMLZ3V | 1525 grams | <4.0 | 4.8

Coalescing Element

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6.0" (150 mm) O.D. x 37.80" (960 mm) long</td>
<td>Outside In</td>
<td></td>
<td>≥ 99.5%</td>
</tr>
</tbody>
</table>

Note:
Based on ULSD15 with 27 Dynes/cm surface tension and 0.25% (2500 ppm) water injection

Particulate Element
Flow Direction: Outside In
Element Nominal Dimensions: 6.0" (150 mm) O.D. x 37.80" (960 mm) long

Coalescing Element
Flow Direction: Inside Out
Element Nominal Dimensions: 6.4" (163 mm) O.D. x 39.4" (1001 mm) long

$\Delta P_{housing}$

BDS $\Delta P_{housing}$ for fluids with sp gr= 0.86

$\Delta P_{element} = flow \times element \times \Delta P$ factor \times viscosity factor

If working in units of bars & L/min, divide above factor by 54.9.

Viscosity factor: Divide viscosity by 37 SUS (3 cSt).

$\Delta P_{filter} = \Delta P_{housing} + \Delta P_{element}$

Exercise: Determine ΔP at 70 gpm (265 L/min) for BDS39QPMLZ3VVM

Solution:

$\Delta P_{housing} = 10 \text{ psi} = [0.69 \text{ bar}]$

$\Delta P_{element (39QPMLZ1V)} = 70 \times 0.01 = 0.7 \text{ psi} = [0.05 \text{ bar}]$

$\Delta P_{element (C396)} = 70 \times 0.17 = 11.9 \text{ psi} = [0.82 \text{ bar}]$

$\Delta P_{total} = 10 + 0.7 + 11.9 = 22.6 \text{ psi} = [1.56 \text{ bar}]$
How to Build a Valid Model Number for a Schroeder BDS supplied with coalescing element:

<table>
<thead>
<tr>
<th>BOX 1</th>
<th>BOX 2</th>
<th>BOX 3</th>
<th>BOX 4</th>
<th>BOX 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDS</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Example:

NOTE: One option per box

<table>
<thead>
<tr>
<th>BOX 1</th>
<th>BOX 2</th>
<th>BOX 3</th>
<th>BOX 4</th>
<th>BOX 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDS</td>
<td>39QPMLZ3</td>
<td>V</td>
<td>VM</td>
<td>= BDS39QPMLZ3VVM</td>
</tr>
</tbody>
</table>

Additional Options

- Omit = None (standard)
- H = Sump Heater
- S = Sight Gauge
- AWDS = Auto water drain 5 gal tank w/ failsafe
- AWD20 = Auto water drain 20 gal tank w/ failsafe
- C = Cla-Val® Flow Control Valve (2" ANSI 150# flange)

NOTES:

- Optional AWD for use only >32° F (0°C)
- Box 4. Viton® is a registered trademark of DuPont Dow Elastomers

Fluid Compatibility

- **Fuel Oils**
 - ULSD15, low sulfur diesel and high sulfur diesel
 - Biodiesel blends
 - Synthetic diesel and blends
 - No. 2 fuel oil and heating oil

Filter Model Number Selection

Particulate Filter Series

- BDS

Particulate Filter Micron Rating

- 39QPMLZ1 = 1μm
- 39QPMLZ3 = 3μm

Housing Seal Material

- V = Viton®
- VM = Visual Pop-Up w/ Manual Reset

Element Nominal Dimensions

- Outside In: 6.0” (150 mm) O.D. x 37.80” (960 mm) long
- Inside Out: 6.4” (163 mm) O.D. x 39.4” (1001 mm) long

Coalescing Element Pressure Side Coalescing

- Max Flow: 70 gpm
- Single Pass Water Removal Efficiency: ≥ 99.5%

Particulate Elements

<table>
<thead>
<tr>
<th>Particulate Elements</th>
<th>DHC</th>
<th>β₀ (c) ≥ 200</th>
<th>β₀ (c) ≥ 1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>39QPMLZ1V</td>
<td>1485 grams</td>
<td><4.0</td>
<td>4.2</td>
</tr>
<tr>
<td>39QPMLZ3V</td>
<td>1525 grams</td>
<td><4.0</td>
<td>4.8</td>
</tr>
</tbody>
</table>

Filtration Ratio per ISO 16889

Using APC calibrated per ISO 11171

Note:

- Based on ULSD15 with 27 Dynes/cm surface tension and 0.25% (2500 ppm) water injection

Highlight

Highlighted product eligible for quick delivery
Features and Benefits

■ Designed with integrated particulate removal pre-filtration for maximum coalescing filter element life in the downstream housing
■ Sized for higher flows or highly contaminated fluid applications
■ Routine element change is only needed on pre-filter (the particulate filter) which saves time and money
■ Patent-pending, three-phase, particulate and fuel/water separation media technology
■ A revolutionary element designed for the highest single-pass water and particulate removal efficiencies in today's ultra-low sulfur diesel (ULSD) fluids
■ Protects expensive Tier 3 and Tier 4 engine components against failures caused by particulate and water transferred from the bulk fuel tank to the vehicle
■ Allows users to achieve or exceed the particulate and water removal specifications of the injection system OEMs
■ Previously acceptable industry standard products no longer provide the high-efficiency separation needed in today’s ULSD fluids
■ In applications >32°F (0°C) complete automation is achievable with a water in fuel sensor fail-safe auto-drain feature using a remote 5 gallon (18L) or 20 gallon (75L) sump with alarm and auto shutdown
■ Schroeder Anti-Static Pleat Media (ASP®) is standard for all coalescing elements

Markets

INDUSTRIAL
MOBILE VEHICLES
MARINE
MINING TECHNOLOGY
AGRICULTURE
POWER GENERATION
COMMON RAIL INJECTOR SYSTEMS
FLEET
RAILROAD
BULK FUEL FILTRATION

Model no. of filter in photograph is: BDS250QPMZ3VVM
BDS2 Bulk Diesel Multi-Skid

Flow Rating: Up to 140 gpm (530 L/min) for ULSD15

Inlet/Outlet Connection: -32 (ORB) SAE J1926

Drain Connection Upper: 1/4” NPT Ball Valve

Drain Connection Lower: 1/4” NPT Ball Valve

Max. Operating Pressure: 100 psi (7 bar)

Min. Yield Pressure: 400 psi (27.6 bar) without sight gauge

Contact factory for yield pressure rating with sight gauge

Rated Fatigue Pressure: Contact Factory

Temperature range: -20°F to 165°F (-29°C to 74°C) sump heater option

32°F to 165°F (0°C to 74°C) standard or AWD option

Bypass Indication:

<table>
<thead>
<tr>
<th>Particulate Filter</th>
<th>Coalescing Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Lower indication options available)</td>
<td>Particulate: 15 psi (1.03 bar)</td>
</tr>
<tr>
<td>Particulate: 20 psi (1.37 bar)</td>
<td>Coalescing: 30 psi (2 bar)</td>
</tr>
</tbody>
</table>

Bypass Valve Cracking:

<table>
<thead>
<tr>
<th>Particulate Filter</th>
<th>Coalescing Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulate Filter</td>
<td>Particulate: 15 psi (1.03 bar)</td>
</tr>
<tr>
<td>Particulate: 20 psi (1.37 bar)</td>
<td>Coalescing: 25 psi (1.7 bar)</td>
</tr>
<tr>
<td>Coalescing Filter</td>
<td>Coalescing: 30 psi (2 bar)</td>
</tr>
</tbody>
</table>

Materials of Construction:

<table>
<thead>
<tr>
<th>Particulate Filter</th>
<th>Coalescing Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porting Base: Anodized Aluminum</td>
<td>Porting Base: Anodized Aluminum</td>
</tr>
<tr>
<td>Element Bowl: Epoxy Paint w/ High-phos Electroless Nickel Plating (Standard)</td>
<td>Element Bowl: Epoxy Paint w/ High-phos Electroless Nickel Plating (Standard)</td>
</tr>
<tr>
<td>Cap: Plated Steel</td>
<td>Cap: Plated Steel</td>
</tr>
</tbody>
</table>

Weight: 596 Lbs. (270 kg)

Element Change Clearance: 33.8” (858 mm)

NOTES:

Element are sold with the housing

Details:

- **View with Plugged Sight Gauge**
 - Top View
 - Side View
 - Front View
 - Back View
 - Bottom View

Dimensions:

- **Element Change Clearance:** 33.8” (858 mm)

Metric dimensions in ().
Dimensions shown are inches [millimeters] for general information and overall envelope size only.
For complete dimensions please contact Schroeder Industries to request a certified print.

Schroeder Industries | Fuel Filtration
Particulate Elements	DHC	$\beta_x (c) \geq 200$	$\beta_x (c) \geq 1000$
39QPMLZ1V | 1485 grams | <4.0 | 4.2
39QPMLZ3V | 1525 grams | <4.0 | 4.8

Coalescing Element	Pressure Side Coalescing
C396Z5V | Max Flow | Single Pass Water Removal Efficiency | $\geq 99.5\%$

<table>
<thead>
<tr>
<th>Flow gpm</th>
<th>Flow L/min</th>
<th>∆P element</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>(56)</td>
<td>(0.20)</td>
</tr>
<tr>
<td>40</td>
<td>(189)</td>
<td>(0.48)</td>
</tr>
<tr>
<td>60</td>
<td>(340)</td>
<td>(0.75)</td>
</tr>
<tr>
<td>80</td>
<td>(492)</td>
<td></td>
</tr>
</tbody>
</table>

$\Delta P_{filter} = \Delta P_{housing} + \Delta P_{element}$

Exercise: Determine ΔP at 70 gpm (265 L/min) for BDS239QPMLZ3VM

Solution:

- $\Delta P_{housing} = 3.0 \text{ psi} = [0.21 \text{ bar}]$
- $\Delta P_{element (39QPMLZ1V)} = 70 \times 0.01 = 0.7 \text{ psi} = [0.05 \text{ bar}]$
- $\Delta P_{element (C396)} = 70 \times 0.17 = 11.9 \text{ psi} = [0.82 \text{ bar}]$
- $\Delta P_{total} = 3.0 + 0.7 + 11.9 = 15.6 \text{ psi} = [1.07 \text{ bar}]$
How to Build a Valid Model Number for a Schroeder BDS Housing Supplied with Element:

<table>
<thead>
<tr>
<th>BOX 1</th>
<th>BOX 2</th>
<th>BOX 3</th>
<th>BOX 4</th>
<th>BOX 5</th>
<th>BOX 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example: NOTE: One option per box

<table>
<thead>
<tr>
<th>BOX 1</th>
<th>BOX 2</th>
<th>BOX 3</th>
<th>BOX 4</th>
<th>BOX 5</th>
<th>BOX 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDS</td>
<td>2</td>
<td>39QPMLZ3</td>
<td>V</td>
<td>VM</td>
<td></td>
</tr>
</tbody>
</table>

= BDS239QPMLZ3VVM

BOX 5

Dirt Alarm®

VM = Visual Pop-Up w/ Manual Reset

BOX 6

Sump Options

- Om = None (standard)
- H = Sump Heater
- S = Sight Gauge
- AWD5 = Auto water drain 5 gal tank w/ failsafe
- AWD20 = Auto water drain 20 gal tank w/ failsafe
- C = Cla-Val® Flow Control Valve (2" ANSI 150# flange)

NOTES:

Optional AWD for use only >32° F (0°C)

Box 4. Viton® is a registered trademark of DuPont Dow Elastomers

Particulate Elements
DHC
Filtration Ratio per ISO 16889
Using APC calibrated per ISO 11171

<table>
<thead>
<tr>
<th>Particulate Elements</th>
<th>DHC</th>
<th>β (c) ≥ 200</th>
<th>β (c) ≥ 1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>39QPMLZ1V</td>
<td>1485 grams</td>
<td><4.0</td>
<td>4.2</td>
</tr>
<tr>
<td>39QPMLZ3V</td>
<td>1525 grams</td>
<td><4.0</td>
<td>4.8</td>
</tr>
</tbody>
</table>

Coalescing Element
Pressure Side Coalescing

<table>
<thead>
<tr>
<th>C39625V</th>
<th>Max Flow</th>
<th>Single Pass Water Removal Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>70 gpm</td>
<td>≥ 99.5%</td>
<td></td>
</tr>
</tbody>
</table>

Note:

Based on ULSD15 with 27 Dynes/cm surface tension and 0.25% (2500 ppm) water injection

Particulate Element

- Flow Direction: Outside In
- Element Nominal Dimensions: 6.0" (150 mm) O.D. x 37.80" (960 mm) long

Coalescing Element

- Flow Direction: Inside Out
- Element Nominal Dimensions: 6.4" (163 mm) O.D. x 39.4" (1001 mm) long

Fuel Oils

- ULSD15, low sulfur diesel and high sulfur diesel
- Biodiesel blends
- Synthetic diesel and blends
- No. 2 fuel oil and heating oil
Features and Benefits

- Designed with integrated particulate removal pre-filtration for maximum coalescing filter element life in the downstream housing
- Sized for higher flows or highly contaminated fluid applications
- Routine element change is only needed on pre-filter (the particulate filter) which saves time and money
- Patent-pending, three-phase, particulate and fuel/water separation media technology
- A revolutionary element designed for the highest single-pass water and particulate removal efficiencies in today's ultra-low sulfur diesel (ULSD) fluids
- Protects expensive Tier 3 and Tier 4 engine components against failures caused by particulate and water transferred from the bulk fuel tank to the vehicle
- Allows users to achieve or exceed the particulate and water removal specifications of the injection system OEMs
- Previously acceptable industry standard products no longer provide the high-efficiency separation needed in today's ULSD fluids
- In applications >32°F (0°C) complete automation is achievable with a water in fuel sensor fail-safe auto-drain feature using a remote 5 gallon (18L) or 20 gallon (75L) sump with alarm and auto shutdown
- Schroeder Anti-Static Pleat Media (ASP®) is standard for all coalescing elements

Markets
Specifications

Flow Rating: Up to 140 gpm to 210 gpm (530 to 795 L/min) for ULSD15

Inlet/Outlet Connection: -32 (ORB) SAE J1926

Drain Connection Upper: 1/4" NPT Ball Valve

Drain Connection Lower: 1/4" NPT Ball Valve

Max. Operating Pressure: 100 psi (7 bar)

Min. Yield Pressure: 400 psi (27.6 bar) without sight gauge

Contact factory for yield pressure rating with sight gauge

Rated Fatigue Pressure: Contact Factory

Temperature range:
-20°F to 165°F (-29°C to 74°C) sump heater option
32°F to 165°F (0°C to 74°C) standard or AWD option

Bypass Indication:
- (Lower indication options available)
 - Particulate Filter
 - Coalescing Filter

Bypass Valve Cracking:
- Particulate: 20 psi (1.37 bar)
- Coalescing: 30 psi (2 bar)

Materials of Construction:
- Particulate Filter
 - Porting Base: Anodized Aluminum
 - Element Bowl: Epoxy Paint w/ High-phos Electroless Nickel Plating (Standard)
 - Cap: Plated Steel
- Coalescing Filter
 - Porting Base: Anodized Aluminum
 - Element Bowl: Epoxy Paint w/ High-phos Electroless Nickel Plating (Standard)
 - Cap: Plated Steel

Weight: 596 Lbs. (270 kg)

Element Change Clearance: 33.8" (858 mm)

NOTES:

Elements are sold with the housing

Metric dimensions in ().

Dimensions shown are inches for general information and overall envelope size only.

For complete dimensions please contact Schroeder Industries to request a certified print.
Filtration Ratio per ISO 16889
Using APC calibrated per ISO 11171

<table>
<thead>
<tr>
<th>Particulate Elements</th>
<th>DHC</th>
<th>βₚ (c) ≥ 200</th>
<th>βₚ (c) ≥ 1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>39QPMZ1V</td>
<td>1485 grams</td>
<td><4.0</td>
<td>4.2</td>
</tr>
<tr>
<td>39QPMZ3V</td>
<td>1525 grams</td>
<td><4.0</td>
<td>4.8</td>
</tr>
</tbody>
</table>

Coalescing Element

<table>
<thead>
<tr>
<th>Pressure Side Coalescing</th>
</tr>
</thead>
<tbody>
<tr>
<td>C396Z5V 70 gpm</td>
</tr>
</tbody>
</table>

Note: Contact Factory for deltaP housing data

ΔPhousing

BDS ΔPhousing for fluids with sp gr= 0.86

Note: Contact Factory for deltaP housing data

ΔPhousing = flow x element ΔP factor x viscosity factor

El. ΔP factors @ 37 SUS (3 cSt).
C396Z5V = .17
39QPMZ1V = .01
39QPMZ3V = .01

If working in units of bars & L/min, divide above factor by 54.9

Viscosity factor: Divide viscosity by 37 SUS (3 cSt).

Notes

Exercise: Determine ΔP at 70 gpm (265 L/min) for BDS239QPMZ3VVM

Solution:

ΔPhousing = 3.0 psi = [0.21 bar]
ΔP_element (39QPMZ1V) = 70 x 0.01 = 0.7 psi [0.05 bar]
ΔP_element (C396) = 70 x 0.17 = 11.9 psi [0.82 bar]
ΔP_total = 3.0 + 0.7 + 11.9 = 15.6 psi [1.07 bar]
How to Build a Valid Model Number for a Schroeder BDS Housing Supplied with Element:

Example: Note: One option per box

<table>
<thead>
<tr>
<th>BOX 1</th>
<th>BOX 2</th>
<th>BOX 3</th>
<th>BOX 4</th>
<th>BOX 5</th>
<th>BOX 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BDS 3</td>
<td>39QPMLZ3</td>
<td>V</td>
<td>VM</td>
<td>BDS339QPMLZ3VVM</td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
- Optional AWD for use only >32°F (0°C)
- Box 4. Viton® is a registered trademark of DuPont Dow Elastomers

Element Part Number Selection

Particulate Elements

- **Flow Direction:** Inside Out
- **Nominal Dimensions:** 6.0” (150 mm) O.D. x 37.80” (960 mm) long

<table>
<thead>
<tr>
<th>Element</th>
<th>DHC</th>
<th>β₁ (c) ≥ 200</th>
<th>β₉ (c) ≥ 1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>39QPMLZ1V</td>
<td>1485 grams</td>
<td><4.0</td>
<td>4.2</td>
</tr>
<tr>
<td>39QPMLZ3V</td>
<td>1525 grams</td>
<td><4.0</td>
<td>4.8</td>
</tr>
</tbody>
</table>

Coalescing Element

- **Flow Direction:** Outside In
- **Nominal Dimensions:** 6.4” (163 mm) O.D. x 39.4” (1001 mm) long

Pressure Side Coalescing

- **Max Flow:** 70 gpm
- **Single Pass Water Removal Efficiency:** ≥ 99.5%

Fuel Oils
- ULSD15, low sulfur diesel and high sulfur diesel
- Biodiesel blends
- Synthetic diesel and blends
- No. 2 fuel oil and heating oil
Features and Benefits

- Designed with integrated particulate removal pre-filtration for maximum coalescing filter element life in the downstream housing.
- Sized for higher flows or highly contaminated fluid applications.
- Routine element change is only needed on pre-filter (the particulate filter) which saves time and money.
- Patent-pending, three-phase, particulate and fuel/water separation media technology.
- A revolutionary element designed for the highest single-pass water and particulate removal efficiencies in today's ultra-low sulfur diesel (ULSD) fluids.
- Protects expensive Tier 3 and Tier 4 engine components against failures caused by particulate and water transferred from the bulk fuel tank to the vehicle.
- Allows users to achieve or exceed the particulate and water removal specifications of the injection system OEMs.
- Previously acceptable industry standard products no longer provide the high-efficiency separation needed in today's ULSD fluids.
- In applications >32°F (0°C) complete automation is achievable with a water in fuel sensor fail-safe auto-drain feature using a remote 5 gallon (18L) or 20 gallon (75L) sump with alarm and auto shutdown.
- Schroeder Anti-Static Pleat Media (ASP®) is standard for all coalescing elements.

Markets

- INDUSTRIAL
- MOBILE VEHICLES
- MARINE
- MINING TECHNOLOGY
- AGRICULTURE
- POWER GENERATION
- COMMON RAIL INJECTOR SYSTEMS
- FLEET
- RAILROAD
- BULK FUEL FILTRATION
Bulk Diesel Multi-Skid

Flow Rating: From 210 gpm to 280 gpm (795 to 1060 L/min) for ULSD15

Inlet/Outlet Connection: -32 (ORB) SAE J1926

Drain Connection Upper: 1/4” NPT Ball Valve

Drain Connection Lower: 1/4” NPT Ball Valve

Max. Operating Pressure: 100 psi (7 bar)

Min. Yield Pressure: 400 psi (27.6 bar) without sight gauge

Contact factory for yield pressure rating with sight gauge

Rated Fatigue Pressure: Contact Factory

Temperature range: -20°F to 165°F (-29°C to 74°C) sump heater option

32°F to 165°F (0°C to 74°C) standard or AWD option

Bypass Indication:
- Particulate Filter
 - Particulate: 15 psi (1.03 bar)
- Coalescing Filter
 - Coalescing: 25 psi (1.7 bar)

Bypass Valve Cracking:
- Particulate Filter
 - Particulate: 20 psi (1.37 bar)
- Coalescing Filter
 - Coalescing: 30 psi (2 bar)

Materials of Construction:
- Particulate Filter
 - Porting Base: Anodized Aluminum
 - Element Bowl: Epoxy Paint w/ High-phos Electroless Nickel Plating (Standard)
 - Cap: Plated Steel
- Coalescing Filter
 - Porting Base: Anodized Aluminum
 - Element Bowl: Epoxy Paint w/ High-phos Electroless Nickel Plating (Standard)
 - Cap: Plated Steel

Weight: 904 Lbs. (410 kg)

Element Change Clearance: 33.8” (858 mm)

NOTES:

Elements are sold with the housing

Metric dimensions in ().
Dimensions shown are inches for general information and overall envelope size only.
For complete dimensions please contact Schroeder Industries to request a certified print.
Particulate Elements

<table>
<thead>
<tr>
<th>Element</th>
<th>DHC</th>
<th>(\beta_x (c) \geq 200)</th>
<th>(\beta_x (c) \geq 1000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>39QPMLZ1V</td>
<td>1485 grams</td>
<td><4.0</td>
<td>4.2</td>
</tr>
<tr>
<td>39QPMLZ3V</td>
<td>1525 grams</td>
<td><4.0</td>
<td>4.8</td>
</tr>
</tbody>
</table>

Coalescing Element

<table>
<thead>
<tr>
<th>Element</th>
<th>Max Flow</th>
<th>Single Pass Water Removal Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>C396Z5V</td>
<td>70 gpm</td>
<td>(\geq 99.5%)</td>
</tr>
</tbody>
</table>

Note:

Based on ULSD15 with 27 Dynes/cm surface tension and 0.25% (2500 ppm) water injection

Pressure Drop Information

- \(\Delta P_{\text{housing}} \) for fluids with sp gr= 0.86

Particulate Element

- Flow Direction: Outside In
- Element Nominal Dimensions: 6.0” (150 mm) O.D. x 37.80” (960 mm) long

Coalescing Element

- Flow Direction: Inside Out
- Element Nominal Dimensions: 6.4” (163 mm) O.D. x 39.4” (1001 mm) long

Notes

\(\Delta P_{\text{filter}} = \Delta P_{\text{housing}} + \Delta P_{\text{element}} \)

Exercise: Determine \(\Delta P \) at 70 gpm (265 L/min) for BDS239QPMLZ3VM

Solution:

- \(\Delta P_{\text{housing}} = 3.0 \text{ psi} = [0.21 \text{ bar}] \)
- \(\Delta P_{\text{element}} (39QPMLZ1V) = 70 \times 0.01 = 0.7 \text{ psi} = [0.05 \text{ bar}] \)
- \(\Delta P_{\text{element}} (C396Z5V) = 70 \times 0.17 = 11.9 \text{ psi} = [0.82 \text{ bar}] \)
- \(\Delta P_{\text{total}} = 3.0 + 0.7 + 11.9 = 15.6 \text{ psi} = [1.07 \text{ bar}] \)
How to Build a Valid Model Number for a Schroeder BDS Housing Supplied with Element:

<table>
<thead>
<tr>
<th>BOX 1</th>
<th>BOX 2</th>
<th>BOX 3</th>
<th>BOX 4</th>
<th>BOX 5</th>
<th>BOX 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDS</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Example: NOTE: One option per box

<table>
<thead>
<tr>
<th>BOX 1</th>
<th>BOX 2</th>
<th>BOX 3</th>
<th>BOX 4</th>
<th>BOX 5</th>
<th>BOX 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDS</td>
<td>4</td>
<td>39QPMLZ3</td>
<td>V</td>
<td>VM</td>
<td>= BDS439QPMLZ3VVM</td>
</tr>
</tbody>
</table>

Filter Series

<table>
<thead>
<tr>
<th>BOX 5</th>
<th>BOX 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>VM = Visual Pop-Up w/ Manual Reset</td>
<td>Sump Options</td>
</tr>
<tr>
<td>H = Sump Heater</td>
<td></td>
</tr>
<tr>
<td>S = Sight Gauge</td>
<td></td>
</tr>
<tr>
<td>AWD5 = Auto water drain 5 gal tank w/ failsafe</td>
<td></td>
</tr>
<tr>
<td>AWD20 = Auto water drain 20 gal tank w/ failsafe</td>
<td></td>
</tr>
<tr>
<td>C = Cla-Val® Flow Control Valve (2" ANSI 150# flange)</td>
<td></td>
</tr>
</tbody>
</table>

NOTES:

Optional AWD for use only >32° F (0°C)

Box 4. Viton® is a registered trademark of DuPont Dow Elastomers

Filtration Ratio per ISO 16889

Using APC calibrated per ISO 11171

<table>
<thead>
<tr>
<th>Particulate Elements</th>
<th>DHC</th>
<th>(\beta_{5} (c) \geq 200)</th>
<th>(\beta_{5} (c) \geq 1000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>39QPMLZ1V</td>
<td>1485 grams</td>
<td><4.0</td>
<td>4.2</td>
</tr>
<tr>
<td>39QPMLZ3V</td>
<td>1525 grams</td>
<td><4.0</td>
<td>4.8</td>
</tr>
</tbody>
</table>

Coalescing Element

<table>
<thead>
<tr>
<th>Pressure Side Coalescing</th>
</tr>
</thead>
<tbody>
<tr>
<td>C39625V</td>
</tr>
<tr>
<td>Max Flow</td>
</tr>
<tr>
<td>70 gpm</td>
</tr>
<tr>
<td>(\geq 99.5 %)</td>
</tr>
</tbody>
</table>

Coalescing Element

| Flow Direction: Inside Out |
| Element Nominal Dimensions: 6.4" (163 mm) O.D. x 39.4" (1001 mm) long |

Fluid Compatibility

- ULSD15, low sulfur diesel and high sulfur diesel
- Biodiesel blends
- Synthetic diesel and blends
- No. 2 fuel oil and heating oil
High Flow | Low Viscosity Housing Filter

*Coalescing Elements Patent-Pending

Applications

- Excellent filtration performance in a single pass
- Low pressure loss due to innovative element technology
- Easy to service thanks to intelligent element design
- Easy to adapt to filter housings for the removal of the fine particles in diesel
- The Low Viscosity-Housing Filter LVH-F is mainly used to filter low-viscosity fluids. It is especially suitable for applications with large amounts of dirt that need to be removed in just a single pass
- The Optimicron® filter elements used here ensure that both the required cleanliness and a long service life are achieved.
- Available in various sizes, the filters can be optimally integrated into new or existing systems.
- The filters are designed according to ASME Code Section VIII rules and regulations for pressure vessels as well as the ability to certify to other global standards upon request.

Features and Benefits

Markets

- INDUSTRIAL
- BULK FUEL FILTRATION
- MARINE
- MINING TECHNOLOGY
- AGRICULTURE
- POWER GENERATION

Model no. of filter in photograph is: LVHF340NBRFZ

211-951 gpm
799-3600 L/min
150 psi
10 bar
Standard

LVHF
ICF
BDF
BDA
GHPF
GHCF
QCF
BDS
BDS2
BDS3
BDS4
LVH-F
LVH-C
BDFC
BDFP
BDC
HDP
HDPD
BCC

SCHROEDER INDUSTRIES | FUEL FILTRATION 63
High Flow | Low Viscosity Housing Filter

Flow Rating: 211-951 gpm (799-3600 L/min)

Inlet/Outlet Connection:
- ANSI 150#: 2"-12"
- DIN: DN50-DN300

Max. Operating Pressure: 150 psi (10 bar)

Max. Ambient Temperature: 122°F (50°C)

Max. Operating Temperature: 158°F (70°C)

Material Housing: Stainless Steel or Carbon Steel

Dimensions LVH-F1

- **Flow Rating:** 211-951 gpm (799-3600 L/min)
- **Inlet/Outlet Connection:** ANSI 150#: 2"-12"
- **DIN:** DN50-DN300
- **Max. Operating Pressure:** 150 psi (10 bar)
- **Max. Ambient Temperature:** 122°F (50°C)
- **Max. Operating Temperature:** 158°F (70°C)
- **Material Housing:** Stainless Steel or Carbon Steel

Dimensions LVH-F8

- **Flow Rating:** 211-951 gpm (799-3600 L/min)
- **Inlet/Outlet Connection:** ANSI 150#: 2"-12"
- **DIN:** DN50-DN300
- **Max. Operating Pressure:** 150 psi (10 bar)
- **Max. Ambient Temperature:** 122°F (50°C)
- **Max. Operating Temperature:** 158°F (70°C)
- **Material Housing:** Stainless Steel or Carbon Steel

Metric dimensions in ().
Dimensions shown are inches (millimeters) for general information and overall envelope size only.
For complete dimensions please contact Schroeder Industries to request a certified print.
High Flow | Low Viscosity Housing Filter

The lower curve applies to diesel at 20°C (the upper curve is for mineral oil with viscosity to 30 cSt for comparison).

Filter Element Selection
Filter elements must be ordered separately and installed before initial operation on-site.

* Contact Factory for More Details

<table>
<thead>
<tr>
<th>Element</th>
<th>Designation</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filter Element 40"</td>
<td>N42ON-DF003-FA40F</td>
<td>3965085</td>
</tr>
<tr>
<td></td>
<td>N42ON-DF005-FA40F</td>
<td>3916691</td>
</tr>
<tr>
<td></td>
<td>N42ON-DF010-FA40F</td>
<td>4055947</td>
</tr>
</tbody>
</table>

Filter Size (Model) | Maximum Flow Rate | Number of Filter Elements |
LVH-F-1 40 | 211 gpm | 1 pc. |
LVH-F-3 40 | 317 gpm | 3 pcs. |
LVH-F-4 40 | 476 gpm | 4 pcs. |
LVH-F-5 40 | 632 gpm | 5 pcs. |
LVH-F-8 40 | 951 gpm | 8 pcs. |
How to Build a Valid Model Number for a Schroeder LVH-F Supplied with Element:

<table>
<thead>
<tr>
<th>BOX 1</th>
<th>BOX 2</th>
<th>BOX 3</th>
<th>BOX 4</th>
<th>BOX 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVH</td>
<td></td>
<td></td>
<td>40</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ZA</td>
</tr>
</tbody>
</table>

Example: NOTE:

BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 6 BOX 7 BOX 8 BOX 9 BOX 10 BOX 11

LVH F 3 40 E V C V F D12 ZA = LVHF340EVCVD12ZA

<table>
<thead>
<tr>
<th>BOX 6</th>
<th>BOX 7</th>
<th>BOX 8</th>
<th>BOX 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mounting</td>
<td>Pressure Range</td>
<td>Hydraulic Connection</td>
<td>Sealing</td>
</tr>
<tr>
<td>V = Vertical</td>
<td>B = 150 psi (10 bar)</td>
<td>A2 = 2" ANSI 150# SORF</td>
<td>F = Viton®</td>
</tr>
<tr>
<td>H = Horizontal</td>
<td>C = 232 psi (16 bar)</td>
<td>A3 = 3" ANSI 150# SORF</td>
<td></td>
</tr>
</tbody>
</table>

Filter Series

LVH

Functions

F = Filter

Filter Size

1 = 1 filter element
3 = 3 filter elements
4 = 4 filter elements
5 = 5 filter elements
8 = 8 filter elements

Filter Element Length

40 = 40"

Housing Material

E = Stainless Steel
N = Carbon Steel

Clogging Indicator

C12 = Differential pressure indicator, electrical
D17 = Differential pressure indicator, visual/electrical (230V)
D18 = Differential pressure indicator, visual/electrical (240V)
D32 = Differential pressure indicator, visual/electrical (PVL2GW.0 V-113)
D33 = Differential pressure indicator, visual/electrical (PVL2GW.0 111-16)
Z = Without clogging indicator

Available Certification

ZA = ASME Certification

Fluid Compatibility

- ULSD15, low sulfur diesel and high sulfur diesel
- Biodiesel blends
- Synthetic diesel and blends
- No. 2 fuel oil and heating oil

NOTES:

Filter elements must be ordered separately and installed before initial operation on site.
Applications

Features and Benefits
- Excellent filtration performance in a single pass
- Low pressure loss due to innovative element technology
- Easy to service thanks to intelligent element design
- The Low Viscosity-Housing Coalescer LVH-C is mainly used for dewatering of diesel, making it especially suitable for applications with large amounts of water that need to be removed in just a single pass
- The Optimicron® filter elements used ensure that both the required cleanliness and long service life are achieved.
- Available in various sizes, the filters can be optimally integrated into new or existing systems.
- The filters are designed according to the ASME Code Section VIII rules and regulations for pressure vessels as well as the ability to certify to other global standards upon request.

Markets

SCHROEDER INDUSTRIES | FUEL FILTRATION 67
LVHC High Flow | Low Viscosity Housing Coalescer

Filter Housing Specifications

- **Flow Rating:** 211-476 gpm (799-1802 L/min)
- **Inlet/Outlet Connection:** ANSI 150#: 2”-12”
 - DIN: DN50-DN300
- **Max. Operating Pressure:** 150 psi (10 bar)
- **Max. Ambient Temperature:** 122°F (50°C)
- **Max. Operating Temperature:** 122°F (50°C)
- **Material Housing:** Stainless Steel or Carbon Steel

Dimensions LVH-C-D-4-40

- Flow Rating: 211-476 gpm (799-1802 L/min)
- Inlet/Outlet Connection: ANSI 150#: 2”-12”
 - DIN: DN50-DN300
- Max. Operating Pressure: 150 psi (10 bar)
- Max. Ambient Temperature: 122°F (50°C)
- Max. Operating Temperature: 122°F (50°C)
- Material Housing: Stainless Steel or Carbon Steel

Dimensions LVH-C-D-6-40

- Flow Rating: 211-476 gpm (799-1802 L/min)
- Inlet/Outlet Connection: ANSI 150#: 2”-12”
 - DIN: DN50-DN300
- Max. Operating Pressure: 150 psi (10 bar)
- Max. Ambient Temperature: 122°F (50°C)
- Max. Operating Temperature: 122°F (50°C)
- Material Housing: Stainless Steel or Carbon Steel

Metric dimensions in ().
Dimensions shown are inches (millimeters) for general information and overall envelope size only.
For complete dimensions please contact Schroeder Industries to request a certified print.
### Filter Size (Model)	Maximum Flow Rate	Number of Coalescing Elements	Number of Separator Elements
LVH-CD-4 40 | 211 gpm | 4 pcs. | 3 pcs. |
LVH-CD-6 40 | 317 gpm | 6 pcs. | 4 pcs. |
LVH-CD-9 40 | 476 gpm | 9 pcs. | 6 pcs. |

Filter Calculation

#### Filter Size (Model)	Maximum Flow Rate	Number of Coalescing Elements	Number of Separator Elements
LVH-CD-4 40 | 211 gpm | 4 pcs. | 3 pcs. |
LVH-CD-6 40 | 317 gpm | 6 pcs. | 4 pcs. |
LVH-CD-9 40 | 476 gpm | 9 pcs. | 6 pcs. |

Filter Element Selection
Filter elements must be ordered separately and installed before initial operation on-site.
LVHC Filter Model Number Selection

<table>
<thead>
<tr>
<th>Box 1</th>
<th>Box 2</th>
<th>Box 3</th>
<th>Box 4</th>
<th>Box 5</th>
<th>Box 6</th>
<th>Box 7</th>
<th>Box 8</th>
<th>Box 9</th>
<th>Box 10</th>
<th>Box 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVH</td>
<td>CD</td>
<td>4</td>
<td>40</td>
<td>E</td>
<td>V</td>
<td>B</td>
<td>V</td>
<td>F</td>
<td>D32</td>
<td>ZA</td>
</tr>
</tbody>
</table>

Example:

NOTE: LVHCD440EVBVF D32ZA

How to Build a Valid Model Number for a Schroeder LVH-C Supplied with Element:

Filter Series

- LVH

Functions

- CD = Coalescing, Diesel Fuel

Filter Size & Number of Elements per Housing

- 4 = 4 coalescing & 3 separator elements
- 6 = 6 coalescing & 4 separator elements
- 9 = 9 coalescing & 6 separator elements

Filter Element Length

- 40 = 40".

Housing Material

- E = Stainless Steel
- N = Carbon Steel

Mounting

- V = Vertical

Pressure Range

- B = 150 psi (10 bar)

Hydraulic Connection

- A2 = 2" ANSI 150# SORF
- A3 = 3" ANSI 150# SORF
- A4 = 4" ANSI 150# SORF
- A6 = 6" ANSI 150# SORF
- A8 = 8" ANSI 150# SORF
- L = DIN DN 50
- T = DIN DN 100
- V = DIN DN 150
- W = DIN DN 200
- Y = DIN DN 300

Sealing

- F = Viton®

Clogging Indicator

- C12 = Differential pressure indicator, electrical
- D17 = Differential pressure indicator, visual/electrical (230V)
- D18 = Differential pressure indicator, visual/electrical (240V)
- D32 = Differential pressure indicator, visual/electrical (PV/LGW.0 V-113)
- D33 = Differential pressure indicator, visual/electrical (PV/LGW.0 111-16)
- Z = Without clogging indicator

Available Certification

- ZA = ASME Certification

Notes:

Filter elements must be ordered separately and installed before initial operation on site.

Fuel Oils

- ULSD15, low sulfur diesel and high sulfur diesel
- Biodiesel blends
- Synthetic diesel and blends
- No. 2 fuel oil and heating oil
BULK DIESEL MOBILE FILTRATION UNITS

Section 2:
Bulk Diesel Mobile Filtration Units

Mobile units provide a fuel filtration solution that address the particulate contamination and water removal in an easy to use package. Because of its mobility, it can be deployed in remote sites or moved between different bulk diesel storage tanks on a facility site.

Bulk Diesel Tanks where contaminated diesel fuel is left in a tank, can jeopardize all of the effort that were put in cleaning the fuel prior to filling up the tank. Over time, fuel in bulk diesel storage tanks can ingress particulate and water contamination from the environment.

Water, over time, results in organic growth such as bacteria and/or fungus. Bacteria or fungus can cause effects similar to free water on fuel systems. This includes rust, corrosion or emissions problems. The effects can be accelerated as the fuel ages and the level of acidity and oxidation can be shown with the Total Acid Number TAN (mg KOH/g) Acid Number. These contaminants may also coat the water in fuel sensors in a system and prevent the proper detection of water.

Natural Gas Drilling Site Example

A bulk diesel fuel storage tank on a remote Natural Gas Drilling site, used to fuel the generator was found with heavy sludge buildup. The sludge and dirt caused loss of production (generator not running) and damage to diesel engine components totaling over $100,000 in lost production in one hour.

Due to the severe contamination, the fuel was pumped into another, clean tank by the BDC bulk diesel filter cart and cleaned in a single pass. With this single pass. Particulate and free water were removed in one step. The first stage Bag Filter on the BDC was ideal for the gross removal of microbial bloom/growth, rust and large particulates from the fuel. With the addition of a bag housing, the BDC can handle the high dirt loads often found in on-site service tanks.

After the original tank was emptied, the sludge at the bottom of the tank (pictured) was removed and the tank was thoroughly cleaned to have it ready for the next delivery of fuel. To maintain a clean tank and clean fuel, the BDC is ideal as a kidney loop system that polishes the fuel on a regular basis or can be permanently installed.

Fuel Contamination types:

<table>
<thead>
<tr>
<th>Contamination Type</th>
<th>Sources</th>
<th>Effects</th>
<th>Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulates:</td>
<td>Contaminated fuel delivery</td>
<td>Wear and tear of diesel engine components</td>
<td>Fuel Filtration</td>
</tr>
<tr>
<td></td>
<td>Missing tank breather</td>
<td>Premature failure</td>
<td>Periodic tank cleaning/fuel polishing</td>
</tr>
<tr>
<td></td>
<td>Tank corrosion</td>
<td></td>
<td>Add desiccant breathers</td>
</tr>
<tr>
<td></td>
<td>Dirt left from tank installation</td>
<td></td>
<td>Filtration at each stage of fuel movement</td>
</tr>
<tr>
<td>Water:</td>
<td>Contaminated fuel delivery</td>
<td>Engine combustion and/or injector problems</td>
<td>Fuel Filtration</td>
</tr>
<tr>
<td></td>
<td>Condensation</td>
<td>Corrosion</td>
<td>Close any openings on tank</td>
</tr>
<tr>
<td></td>
<td>Leaks and outside influences</td>
<td>Clogged/saturated filters</td>
<td>Periodic tank cleaning/fuel polishing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Organic/Biological growth</td>
<td></td>
</tr>
<tr>
<td>Organic Growth:</td>
<td>Generated by presents of water and air</td>
<td>Clogs filters, engine parts</td>
<td>Periodic tank cleaning/fuel polishing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Increased TAN number (corrosive effect)</td>
<td>Prevent water from entering tank</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Use desiccant breathers</td>
</tr>
</tbody>
</table>
Bulk Diesel Filter Cart

Features and Benefits

- Designed with integrated particulate removal pre-filtration for maximum coalescing filter element life in the downstream housing
- Routine element change only needed on GHPF particulate filter, keeping operating costs low
- Patented GeoSeal® elements designed to provide consistent quality with the highest single-pass water and particulate removal efficiencies in today’s ultra-low sulfur diesel (ULSD) fuels
- All-aluminum filter housings and plumbing components are fully compatible with diesel and biodiesel
- Sight glass, Y-strainer, and upstream/downstream test points included
- 15’ clear suction hose and rubber discharge hose with cam-and-groove connections and 3’ wands
- At just under 28” wide, this cart will fit through standard doorways
- Electric motor includes 120VAC with resettable overload and 7’ power cord
- Latching, resettable pressure indicators trip at 5 psi before bypass valve cracking, providing early warning to the operator of when to change the filter element

Application Introduction:
The BDFC is ideal for those wanting to maintain clean fuel in their bulk storage tanks. The new BDFC provides exceptional particulate filtration and continuous water removal with higher flow rates. The GHPF particulate pre-filter and GHCF coalescing water removal filters feature Schroeder Industries’ GeoSeal® patented aftermarket solution, ensuring quality replacement elements are used with every element change. These elements use the fully synthetic Excellement Z-Media® and revolutionary coalescing media to fully protect vital diesel engine components from debris and water.

Models

- Model no. of filter in photograph is: BDFC11GGZ3CG5VD525
Bulk Diesel Filter Cart

Filter Housing Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Particulate Filter</th>
<th>Coalescing Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow Rating:</td>
<td>Electric Motor: 14 gpm or 25 gpm (53 L/min or 95 L/min)</td>
<td>Electric Motor: 16 gpm or 25 gpm (61 L/min or 95 L/min)</td>
</tr>
<tr>
<td>Ambient Environment Temperature Range:</td>
<td>-20°F to 104°F (-29°C to 40°C)</td>
<td></td>
</tr>
<tr>
<td>Bypass Indication:</td>
<td>Electric Motor: 35 psi (2.4 bar)</td>
<td>Electric Motor: 35 psi (2.4 bar)</td>
</tr>
<tr>
<td></td>
<td>Air Operated: 25 psi (1.7 bar)</td>
<td>Air Operated: 15 psi (1.0 bar)</td>
</tr>
<tr>
<td>Bypass Valve Cracking:</td>
<td>Electric Motor: 40 psi (2.8 bar)</td>
<td>Electric Motor: 40 psi (2.8 bar)</td>
</tr>
<tr>
<td></td>
<td>Air Operated: 30 psi (2.1 bar)</td>
<td>Air Operated: 20 psi (1.4 bar)</td>
</tr>
<tr>
<td>Materials of Construction:</td>
<td>Head: Cast Aluminum, Anodized</td>
<td>Head: Cast Aluminum, Anodized</td>
</tr>
<tr>
<td></td>
<td>Element Case: Aluminum, Anodized</td>
<td>Element Case: Aluminum, Anodized</td>
</tr>
<tr>
<td></td>
<td>Sump: Cast Aluminum, Anodized</td>
<td></td>
</tr>
<tr>
<td>Weight:</td>
<td>131 lbs. (59.4 kg)</td>
<td></td>
</tr>
<tr>
<td>Standard Operating Frequency & Phase:</td>
<td>60 Hz, Single Phase</td>
<td></td>
</tr>
<tr>
<td>Full Load Amperage @ Operating Voltage:</td>
<td>13.4 A @ 115 VAC</td>
<td>7.2-6.7 A @ 208-230 VAC</td>
</tr>
<tr>
<td>Service Factor Amperage @ Operating Voltage:</td>
<td>15.2 A @ 115 VAC</td>
<td>8.1-7.6 A @ 208-230 VAC</td>
</tr>
</tbody>
</table>

Dimensions

- Metric dimensions in [].
- Dimensions shown are inches [millimeters] for general information and overall envelope size only.
- For complete dimensions please contact Schroeder Industries to request a certified print.

www.schroederindustries.com
Bulk Diesel Filter Cart

Filtration Ratio per ISO 16889
Using APC calibrated per ISO 11171

<table>
<thead>
<tr>
<th>Particulate Elements</th>
<th>DHC</th>
<th>$\beta_x (c) \geq 200$</th>
<th>$\beta_x (c) \geq 1000$</th>
</tr>
</thead>
<tbody>
<tr>
<td>11GGZ1V</td>
<td>172 grams</td>
<td><4.0</td>
<td>4.5</td>
</tr>
<tr>
<td>11GGZ3V</td>
<td>148 grams</td>
<td>4.6</td>
<td>5.8</td>
</tr>
</tbody>
</table>

Coalescing Element

<table>
<thead>
<tr>
<th>Coalescing Element</th>
<th>Flow Direction</th>
<th>Element Nominal Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>C125GZ5V</td>
<td>Inside Out</td>
<td>5.0" (27 mm) O.D. x 12" (305 mm) long</td>
</tr>
</tbody>
</table>

Pressure Side Coalescing

<table>
<thead>
<tr>
<th>Coalescing Element</th>
<th>Max Flow</th>
<th>Single Pass Water Removal Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>C125GZ5V</td>
<td>25 gpm</td>
<td>$\geq 95%$</td>
</tr>
</tbody>
</table>

Note:
Based on ULSD15 with 27 Dynes/cm surface tension and 0.25% (2500 ppm) water injection

- **Particulate Element**
 - Flow Direction: Outside In
 - Element Nominal Dimensions: 5.0" (27 mm) O.D. x 11" (279 mm) long

- **Coalescing Element**
 - Flow Direction: Inside Out
 - Element Nominal Dimensions: 5.0" (27 mm) O.D. x 12" (305 mm) long

Notes

- []
- []
- []
- []
- []
How to Build a Valid Model Number for a Schroeder BDFC Supplied with Elements:

<table>
<thead>
<tr>
<th>BOX 1</th>
<th>BOX 2</th>
<th>BOX 3</th>
<th>BOX 4</th>
<th>BOX 5</th>
<th>BOX 6</th>
<th>BOX 7</th>
<th>BOX 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDF</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example: NOTE: One option per box

<table>
<thead>
<tr>
<th>BOX 1</th>
<th>BOX 2</th>
<th>BOX 3</th>
<th>BOX 4</th>
<th>BOX 5</th>
<th>BOX 6</th>
<th>BOX 7</th>
<th>BOX 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDF</td>
<td>11GGZ3</td>
<td>CG5</td>
<td>V</td>
<td>D5</td>
<td>25</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

= BDFC11GGZ3CG5V525S

BOX 5

Seal Material

V = Viton®

BOX 6

Dirt Alarm®

D5 = Visual Pop-Up; Manual Reset

BOX 7

Options

Omit = Included Sight Glass, Y-Strainer & Upstream / Downstream Test Points

I = Water-In-Fuel (WIF) Sensor w/ Indicator Light

BOX 8

Pump Sizing and Configuration

14 = 14 gpm 120VAC 60 Hz Single-Phase
16A = 16 gpm Air Driven
25 = 25 gpm 120VAC 60 Hz Single-Phase
25A = 25 gpm Air Driven

NOTES:

For 50Hz applications, contact factory

Box 5. Viton® is a registered trademark of DuPont Dow Elastomers

Box 7. "I" option is only available with electric motor configurations

Filtration Ratio per ISO 16889

Using APC calibrated per ISO 11171

<table>
<thead>
<tr>
<th>Particulate Elements</th>
<th>DHC(g)</th>
<th>β₁ (c) ≥ 200</th>
<th>β₅ (c) ≥ 1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>11GGZ1V</td>
<td>172</td>
<td><4.0</td>
<td>4.2</td>
</tr>
<tr>
<td>11GGZ3V</td>
<td>148</td>
<td><4.0</td>
<td>4.8</td>
</tr>
</tbody>
</table>

Coalescing Element

Max Flow

Pressure Side Coalescing

Single Pass Water Removal Efficiency

≥ 95%

Note:

Based on ULSD15 with 27 Dynes/cm surface tension and 0.25% (2500) water injection

Particulate Element

Flow Direction: Outside In

Element Nominal Dimensions: 5.0" (27 mm) O.D. x 11" (279 mm) long

Coalescing Element

Flow Direction: Inside Out

Element Nominal Dimensions: 5.0" (27 mm) O.D. x 12" (305 mm) long

Fuel Oils

- ULSD15, low sulfur diesel and high sulfur diesel
- Biodiesel blends
- Synthetic diesel and blends
- No. 2 fuel oil and heating oil
Features and Benefits

- Turn-key coalescing and filtration system, for use as a fuel transfer, polishing, and dispensing solution
- Incorporates high-efficiency particulate and water removal filtration into a stationary mounted system with pump
- Available with either electrical or air operated pump options for more system flexibility
- GHPF and GHCF filter housings use patented GeoSeal® elements
- All-aluminum filter housings are fully compatible with diesel and biodiesel
- Minimal clearance needed for element service, ideal for enclosure installations
- Routine element change only needed on GHPF particulate filter, reducing operating cost
- Patent-pending, three-phase particulate, coalescing and fuel/water separation media technology
- A revolutionary element designed for the highest single-pass water and particulate removal efficiencies in today’s ultra-low sulfur diesel (ULSD) fluids
- Protects expensive Tier III and Tier IV engine components against failures caused by particulate and water transferred from the fuel storage tanks to the equipment
- Allows users to achieve or exceed the particulate and water removal specifications of the injection system OEMs

Markets

- INDUSTRIAL
- MOBILE VEHICLES
- MARINE
- MINING TECHNOLOGY
- AGRICULTURE
- POWER GENERATION
- COMMON RAIL INJECTOR SYSTEMS
- FLEET
- RAILROAD
- BULK FUEL FILTRATION

Application Introduction:

A simple turn-key stationary fuel filtration system
The BDFP provides a simple turn-key stationary fuel filtration system for exceptional fuel transfer, polishing, and dispensing applications. Both filters combine Schroeder’s fully synthetic Z-Media® in a particulate pre-filter, the GHPF, with our patent-pending coalescing water removal filter, the GHCF, to fully protect vital diesel engine components from dirt and water. The BDFP provides premium filtration in a simple system which can easily be integrated into new and existing fuel storage systems.

Bulk Diesel Filtration Panel

Model no. of filter in photograph is: BDFP11GGZ3CH5VD514
Bulk Diesel Filtration Panel

Filter Housing Specifications

- **Flow Rating:**
 - Electric Motor Option: 14 gpm or 25 gpm (53 or 95 L/min)
 - Air Operated Option: 16 or 25 gpm (53 or 95 L/min)
- **Ambient Temperature Range:** 32°F to 104°F (0°C to 40°C) Standard; -20°F to 140°F (-29°C to 40°C) Heater Option
- **Bypass Indication:**
 - **Particulate Filter:**
 - Electric Motor: 35 psi (2.4 bar)
 - Air Operated: 25 psi (1.7 bar)
 - **Coalescing Filter**
 - Electric Motor: 35 psi (2.4 bar)
 - Air Operated: 15 psi (1.0 bar)
- **Bypass Valve Cracking:**
 - **Particulate Filter:**
 - Electric Motor: 40 psi (2.8 bar)
 - Air Operated: 30 psi (2.1 bar)
 - **Coalescing Filter**
 - Electric Motor: 40 psi (2.8 bar)
 - Air Operated: 20 psi (1.4 bar)
- **Materials of Construction:**
 - **Particulate Filter**
 - Porting Head: Cast Aluminum, Anodized
 - Element Bowl: Aluminum, Anodized
 - **Coalescing Filter**
 - Porting Head: Cast Aluminum, Anodized
 - Element Bowl: Aluminum, Anodized
- **Weight:** 130 - 150 lbs. (59 - 68 kg)
- **Element Change Clearance:**
 - GHFP: 2" (51 mm)
 - GHCF: 4" (102 mm)
- **Operating Frequency:** 60 Hz
- **Operating Phase:** Single
- **Full Load Amperage**
 - @ Operating Voltage: 13.4 A @ 115 VAC
- **Service Factor Amperage**
 - @ Operating Voltage: 15.2 A @ 115 VAC
 - @ 208-230 VAC: 8.1-7.6 A
- **Electrical:**
 - ON/OFF Switch and 10-FT Power Cord
 - 1.5 HP / 115VAC / 1Ph / 60Hz
 - 14 gpm (53 L/min)
 - Electric Motor: 35 psi (2.4 bar)
 - Electric Motor: 35 psi (2.4 bar)
 - Electric Motor: 35 psi (2.4 bar)
 - 14 gpm (53 L/min)
 - Electric Motor: 35 psi (2.4 bar)
 - Electric Motor: 35 psi (2.4 bar)
 - Electric Motor: 35 psi (2.4 bar)
 - 14 gpm (53 L/min)
 - Electric Motor: 35 psi (2.4 bar)
 - Electric Motor: 35 psi (2.4 bar)
 - Electric Motor: 35 psi (2.4 bar)
 - 14 gpm (53 L/min)
 - Electric Motor: 35 psi (2.4 bar)
 - Electric Motor: 35 psi (2.4 bar)
 - Electric Motor: 35 psi (2.4 bar)
 - 14 gpm (53 L/min)
- **_Elements sold with the filter system_**

Electric Motor Option

- **Air Operated Option**

Metric dimensions in ().

Dimensions shown are inches [millimeters] for general information and overall envelope size only.

For complete dimensions please contact Schroeder Industries to request a certified print.
Bulk Diesel Filtration Panel

<table>
<thead>
<tr>
<th>Particulate Elements</th>
<th>DHC(g)</th>
<th>$\beta_r (c) \geq 200$</th>
<th>$\beta_r (c) \geq 1000$</th>
</tr>
</thead>
<tbody>
<tr>
<td>11GGZ1V</td>
<td>172</td>
<td><4.0</td>
<td>4.2</td>
</tr>
<tr>
<td>11GGZ3V</td>
<td>148</td>
<td><4.0</td>
<td>4.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coalescing Element</th>
<th>Pressure Side Coalescing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Max Flow</td>
</tr>
<tr>
<td>C125GZ5V</td>
<td>25 gpm</td>
</tr>
</tbody>
</table>

Note:
Based on ULSD15 with 27 Dynes/cm surface tension and 0.25% (2500 ppm) water injection

Particulate Element
- Flow Direction: Outside In
- Element Nominal Dimensions: 5.0" (27 mm) O.D. x 11" (279 mm) long

Coalescing Element
- Flow Direction: Inside Out
- Element Nominal Dimensions: 5.0" (27 mm) O.D. x 12" (305 mm) long

Filtration Ratio per ISO 16889
Using APC calibrated per ISO 11171

Particulate and Coalescing Elements Sold with System

Advanced Fluid Conditioning Solutions

Highlighted product eligible for QuickDelivery

Notes

Bulk Diesel Filtration Panel

How to Build a Valid Model Number for a Schroeder BDFP Supplied with Elements:

<table>
<thead>
<tr>
<th>BOX 1</th>
<th>BOX 2</th>
<th>BOX 3</th>
<th>BOX 4</th>
<th>BOX 5</th>
<th>BOX 6</th>
<th>BOX 7</th>
<th>BOX 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11GZ3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CG5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14</td>
</tr>
</tbody>
</table>

Example: NOTE: One option per box

<table>
<thead>
<tr>
<th>BOX 1</th>
<th>BOX 2</th>
<th>BOX 3</th>
<th>BOX 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDF</td>
<td>P</td>
<td>11GZ3</td>
<td>CG5</td>
</tr>
<tr>
<td>V</td>
<td>D5</td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

= BDFP11GGZ3CG5VD514

Filter Model Number Selection

Element Part Number Selection

Fluid Compatibility

Filter Model Number Selection

Element Part Number Selection

Fluid Compatibility

How to Build a Valid Model Number for a Schroeder BDFP Supplied with Elements:

1. **Filtration Configuration**
 - BDF = Panel Mount
2. **Particulate Filtration**
 - 11GZ1 = 1 µm
 - 11GZ3 = 3 µm
3. **Coalescing Filtration**
 - CG5 = C125GZ5V Coalescing Element
4. **Seal Material**
 - V = Viton®
5. **Dirt Alarm®**
 - D5 = Visual Pop-up, Manual Reset
6. **Options**
 - Omit = Sight Glass (standard)
 - U = Downstream Test Point
 - T = Water-In-Fuel (WIF) sensor only
 - I = WIF sensor w/ remote mount light indicator
 - H = Coalescing sump heater
 - S5 = 5 gal. sump tank*
 - S20 = 20 gal. sump tank*
 - AWD5 = Auto. water drain w/ 5 gal. remote tank*
 - AWD20 = Auto. water drain w/ 20 gal. remote tank*

*only to be used in applications above 32°F (0°C)

Pump Sizing and Configuration

- 14 = 14 gpm 120VAC 60Hz Single-Phase
- 25 = 25 gpm 120VAC 60Hz Single-Phase
- 16 = 16 gpm Air Driven Pump
- 25A = 25 gpm Air Driven Pump

Filtration Ratio per ISO 16889

Using APC calibrated per ISO 11171

<table>
<thead>
<tr>
<th>Particulate Elements</th>
<th>DHC(g)</th>
<th>(\beta_1 (c) \geq 200)</th>
<th>(\beta_1 (c) \geq 1000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11GZ1V</td>
<td>172</td>
<td><4.0</td>
<td>4.2</td>
</tr>
<tr>
<td>11GZ3V</td>
<td>148</td>
<td><4.0</td>
<td>4.8</td>
</tr>
</tbody>
</table>

Coalescing Element

- **Max Flow**: 25 gpm
- **Single Pass Water Removal Efficiency**: ≥ 95%

Note:

Based on ULSD15 with 27 Dynes/cm surface tension and 0.25% (2500) water injection

Particulate Element

- Flow Direction: Outside In
- Element Nominal Dimensions: 5.0” (27 mm) O.D. x 11” (279 mm) long

Coalescing Element

- Flow Direction: Inside Out
- Element Nominal Dimensions: 5.0” (27 mm) O.D. x 12” (305 mm) long

Fuel Oils

- ULSD15, low sulfur diesel and high sulfur diesel
- Biodiesel blends
- Synthetic diesel and blends
- No. 2 fuel oil and heating oil

Viton® is a registered trademark of DuPont Dow Elastomers.

NOTES:

For configurations not listed, please contact factory.

Box 3. Viton® is a registered trademark of DuPont Dow Elastomers.

Box 7. Only box that will allow a combination of options.

Only box that will allow a combination of options.
Applications

Application Introduction:
The Reason for Better Bulk Fuel Filtration
The BDC provides exceptional single pass or kidney loop diesel particulate filtration and continuous water removal. All 3 filters combine Schroeder's fully synthetic media and patent-pending fuel water separation technology. The BDC is ideal for fuel maintenance operations.

Features and Benefits

- Great for kidney loop clean-up and single pass transfer of diesel fuel in larger storage tanks
- Incorporates a bag element pre-filter, available from 1 to 200 micron, for gross removal of microbial bloom contamination and rust
- Fuel and water separation media technology in a three-phase element construction for high efficiency, single-pass removal of emulsified and free-water in Ultra-low Sulfur Diesel (ULSD) and biodiesel fuels
- Designed because prior generation coalescing methods no longer provide high-efficiency separation in ULSD and biodiesel
- Real time fuel condition monitoring can be achieved while using the supplied test points and one of our contamination sensing products
- Pump motor is 115VAC with re-settable overload and 7' power cord for 25 gpm models and available as 220V Single Phase, 230V Three Phase, or 460V Three Phase for 70 gpm models
- Helps protect expensive, vital engine components against failures caused by contaminated fuel

Markets

- INDUSTRIAL
- MOBILE VEHICLES
- MARINE
- MINING TECHNOLOGY
- AGRICULTURE
- POWER GENERATION
- COMMON RAIL INJECTOR SYSTEMS
- FLEET
- RAILROAD
- BULK FUEL FILTRATION

Model no. of filter in photograph is: BDC39QPMZ3VAVM
Bulk Diesel Cart

Filter Housing Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow Rating:</td>
<td>Up to 25 gpm (95 L/min) or 70 gpm (265 L/min) for ULSD15 & biodiesel blends</td>
</tr>
</tbody>
</table>
| **Temperature Range:** | 32°F to 150°F (0°C to 66°C) standard and with AWD option
-20°F to 150°F (-29°C to 66°C) with heater option |
| **Bypass Indication:** | Particulate Filter
Particulate: 15 psi (1.03 bar)
Coalescing Filter: 25 psi (1.7 bar) |
| **Bypass Valve Cracking:** | Particulate Filter
Particulate: 20 psi (1.37 bar)
Coalescing Filter: 30 psi (2 bar) |
| **Materials of Construction:** | Porting Base: Anodized Aluminum
Cap: Plated Steel
Bag Housing: 304 Stainless Steel
Particulate Filter Housing: Epoxy Paint w/ High-phos Electroless Nickel Plating (Standard)
Coalescing Filter Housing: Epoxy Paint w/ High-phos Electroless Nickel Plating (Standard) |
| **Weight:** | 25 gpm model - 785 lbs. (356 kg), 70 gpm model - contact factory |
| **Element Change Clearance:** | 33.8” (858 mm) |
| **Operating Frequency:** | 60 Hz |
| **Operating Phase:** | Single |
| **Full Load Amperage @ Operating Voltage:** | 13.4 A @ 115 VAC
7.2-6.7 A @ 208-230 VAC |
| **Service Factor Amperage @ Operating Voltage:** | 15.2 A @ 115 VAC
8.1-7.6 A @ 208-230 VAC |

For 25 gpm models only. For electrical on 70 gpm models, Contact Factory.

Metric dimensions in (). Dimensions shown are inches [millimeters] for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.
Bulk Diesel Cart

Filtration Ratio per ISO 16889
Using APC calibrated per ISO 11171

<table>
<thead>
<tr>
<th>Particulate Elements</th>
<th>DHC</th>
<th>$\beta_x (c) \geq 200$</th>
<th>$\beta_x (c) \geq 1000$</th>
</tr>
</thead>
<tbody>
<tr>
<td>39QPMLZ1V</td>
<td>1485 grams</td>
<td><4.0</td>
<td>4.2</td>
</tr>
<tr>
<td>39QPMLZ2V</td>
<td>1525 grams</td>
<td><4.0</td>
<td>4.8</td>
</tr>
</tbody>
</table>

Coalescing Element
Flow Direction: Inside Out
Element Nominal Dimensions: 6.4" (163 mm) O.D. x 39.4" (1001 mm) long

Particulate Element
Flow Direction: Outside In
Element Nominal Dimensions: 6.0" (150 mm) O.D. x 37.8" (960 mm) long

Note:
Based on ULSD15 with 27 Dynes/cm surface tension and 0.25% (2500 ppm) water injection

Element
Particulate Performance Information

Particulate and Coalescing Elements Sold with Cart

Optional Replacement Elements

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Micron Rating</th>
<th>Elements Per Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>C396ZSV</td>
<td>Coalescing Element</td>
<td>5 µm</td>
<td>1</td>
</tr>
<tr>
<td>39QPMLZ1V</td>
<td>Particulate Element</td>
<td>1 µm</td>
<td>1</td>
</tr>
<tr>
<td>39QPMLZ2V</td>
<td>Particulate Element</td>
<td>3 µm</td>
<td>1</td>
</tr>
<tr>
<td>PEF5P2PH</td>
<td>Bag Element</td>
<td>5 µm</td>
<td>50</td>
</tr>
<tr>
<td>PEF25P2PH</td>
<td>Bag Element</td>
<td>25 µm</td>
<td>50</td>
</tr>
<tr>
<td>PEF50P2PH</td>
<td>Bag Element</td>
<td>50 µm</td>
<td>50</td>
</tr>
<tr>
<td>PEF100P2PH</td>
<td>Bag Element</td>
<td>100 µm</td>
<td>50</td>
</tr>
</tbody>
</table>
Bulk Diesel Cart

Filter Model Number Selection

Example: NOTE: One option per box

BOX 1	BOX 2	BOX 3	BOX 4	BOX 5	BOX 6
BDC | 39QPMLZ3 | V | A | VM | = BDC39QPMLZ3VAVM

BOX 5

Dirt Alarm®
VM = Visual pop-up w/ Manual Reset

BOX 6

Options
Omit = None (standard)
H = Sump Heater
AW = Automatic Water Drain 5 gal Tank w/ Failsafe
70A = 70 gpm 230VAC Single Phase 60 Hz
70B = 70 gpm 230VAC Three Phase 60 Hz
70C = 70 gpm 460VAC Three Phase 60 Hz

Notes:
Optional AWD is for use only >32°F (0°C)
For 50Hz applications, contact factory
Box 3. Viton® is a registered trademark of DuPont Dow Elastomers

Filtration Ratio per ISO 16889
Using APC calibrated per ISO 11171

<table>
<thead>
<tr>
<th>Particulate Elements</th>
<th>DHC</th>
<th>βx (c) ≥ 200</th>
<th>βx (c) ≥ 1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>39QPMLZ1V</td>
<td>1485 grams</td>
<td><4.0</td>
<td>4.2</td>
</tr>
<tr>
<td>39QPMLZ3V</td>
<td>1525 grams</td>
<td><4.0</td>
<td>4.8</td>
</tr>
</tbody>
</table>

Coalescing Element

Max Flow: 70 gpm
Single Pass Water Removal Efficiency: > 99.5%

Note:
Based on ULSD15 with 27 Dynes/cm surface tension and 0.25% (2500 ppm) water injection

Coalescing Element
Flow Direction: Inside Out
Element Nominal Dimensions: 6.4” (163 mm) O.D. x 39.4” (1001 mm) long

Particulate Element
Flow Direction: Outside In
Element Nominal Dimensions: 6.0” (150 mm) O.D. x 37.8” (960 mm) long

Fuel Oils
- ULSD15, low sulfur diesel and high sulfur diesel
- Biodiesel blends
- Synthetic diesel and blends
- No. 2 fuel oil and heating oil
On-Board Diesel Fuel Filtration

Why is On-Board Diesel Filtration Required?

Mobile machines and commercial vehicles are subject to the toughest working conditions all over the world. To ensure smooth running vehicles and to protect both the engine and the whole drive system from damage, optimum diesel fuel conditioning is particularly important. With its HDP On-Board diesel coalescing/particulate filter, Schroeder offers a modern system for diesel filtration which protects vehicle manufacturers and operators from failures, breakdowns and expensive service interventions. Our solution “Schroeder HDP On-Board Filter,” is a cartridge filter system available in two versions: automatic drain (HDP-HT) and manual drain (HDP-BC).

Schroeder's HDP on-board Diesel Coalescing Filters provide the industry's best engine fuel filtration to ensure that your injectors never see poor quality fuel, and you never see the bill for expensive engine failures. All of Schroeder's fuel filters are compatible up to B100.

In addition, all Tier 4 diesel engines (on- or off-road) now require a fuel cleanliness level of 12/9/6 at injector or better. This equates to a 3-micron filtration level or smaller, with a beta rating of >1000. Today's typical Spin-on type, on-board fuel filters were not designed to filter to this level. Schroeder Fuel Filtration On-board diesel coalescing/particulate filters provide this level of filtration.

With all of the various additives and biodiesel now added to ULSD 15 diesel fuel to regain lubricity, compensate for seasonal differences, minimize microbial growth, and prevent gelling, additional filter clogging problems have arisen compared to fuels used in the past.

Filter clogging leads to reduced power or complete breakdown due to filters being run in bypass mode (no filtration). This can lead to common-rail fuel injector failure which will cost in the thousands of dollars to fix. The use of Schroeder's HDP filters is imperative to remove all of the clogging elements.

The Schroeder HDP On-Board Filter's product benefits are:

- Low investment costs due to cost-optimized design.
- Small installation space required, since lower section of filter does not have to be accessible.
- Great flexibility with regard to installation position since inlet and outlet can be in either direction.
- Consistent dewatering over the entire life of the filter element since water is separated on the clean side.
- Robust design thanks to aluminum housing.
- Economical and technically reliable operation as a result of long element service life.
- High Tech design: Reliable dewatering thanks to automatic water discharge, even during suction side operation.
- Simple adaptation to the on-board power supply through the use of independently controlled water discharge.
- Low residues of diesel left in the filter element in the event of service.
- Reliable radial seal with captive seal design.
- Visual analysis of the contamination possible (Rust, metallic swarf, unusual deposits, which require further investigation).
- Water sensor and fuel preheating available as options.

The Schroeder HDP On-Board Filter results in reliable machine availability:

- From first-class contamination retention.
- Due to highly effective and stable water separation on the clean-side for the entire life of the filter element.
- Life-long efficiency, because at element change, the water separation stage is also replaced at the same time.
- Due to the excellent water separation (achieved by using first class materials) of >95 % to ISO/CD 16332.

Engine Sizes vs. HDP On-Board Filter Solutions

Power Rating Engine (KW)
On-Board Diesel Fuel Coalescing Filter

Applications

- INDUSTRIAL
- MOBILE VEHICLES
- MARINE
- AGRICULTURE
- BULK FUEL FILTRATION

Application Introduction:
The Reason for Better Engine Filtration
Mobile machines and commercial vehicles are subject to the toughest working conditions. To ensure smooth running of vehicles, and to protect both the engine and the drive system from damage, optimum diesel fuel conditioning is particularly important. Schroeder Fuel Filtration On-Board Diesel Coalescing filter offers a modern cartridge filter system design available in two configurations, in order to protect equipment operators from failures, breakdowns and expensive service interventions.

Features and Benefits
- Manual or Fully Automatic water drain
- Optional fuel pre-heater and Water-In-Fuel (WIF) sensor
- Small envelope size offers greater flexibility in mounting locations
- Low investment cost due to the economical design
- Long service life of the element yields low operating costs
- Easy installation due to various porting configurations
- Easy adaptation to the on-board power supply
- Unsurpassed water removal for ULSD

Flow Rating: up to 476 gph (up to 1800 lph)
Operating Pressure: <14.5 psia, (<1 bar absolute) suction side application
Temperature Range:
 - BC: -40°F to 194°F (-40°C to 90°C)
 - HT: -4°F to 194°F (-20°C to 90°C)
 *for extended ranges, contact factory
Nominal Voltage: 24V DC (12V DC is optional for heater or water sensor)
Rated Power Fuel Preheating: 300W
Weight of incl. Element:
 - BC: 5.1 lbs (2.3 kg)
 - BC: 6.8 lbs (3.1 kg)
 - HT: 9.4 lbs (4.25 kg)
 *other models available upon request
Water Separation Efficiency: >95% to ISO CD 16332
Porting Thread:
 - BC: M22x1.5
 - BC: M27x2.0, SAE -12 ORB (optional)
 - HT: G 3/4" (BSPP)

Filter Housing Specifications
On-Board Diesel Fuel Coalescing Filter

HDP KF1 340 BC1
- Manual Water Drain Version

HDP KF1 600 BC1
- Manual Water Drain Version

HDP KF1 600 HT1
- Automatic Water Drain Version

Metric dimensions in ().
Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.
On-Board Diesel Fuel Coalescing Filter

Filtration Ratio Per ISO 19438

<table>
<thead>
<tr>
<th>Particulate Element</th>
<th>Filtration Ratio</th>
<th>Dirt Retention Per ISO 19438 to DP</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 μm</td>
<td>> 99%</td>
<td>300 mbar m > 42g</td>
</tr>
</tbody>
</table>

Suction Side Coalescing Per ISO CD 16332

<table>
<thead>
<tr>
<th>Coalescing Element</th>
<th>Max Flow</th>
<th>Single Pass Water Removal Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 μm</td>
<td>158 gal/h</td>
<td>> 95%</td>
</tr>
</tbody>
</table>

- **Flow Direction:** Outside In
- **Element Nominal Dimensions:**
 - 3.8" (95.6 mm) O.D. x 7.0" (177.2 mm) long - 340 Size
 - 3.8" (95.6 mm) O.D. x 9.4" (238.2 mm) long - 600 Size

Note: For additional HDP performance information, please contact the factory

Fluid Compatibility

- ULSD15 and similar petroleum diesels
- Biodiesel blends
- Synthetic diesel and blends

Note: For Flow and Pressure information, please contact the factory

Replacement Elements

<table>
<thead>
<tr>
<th>Size</th>
<th>Evolution Stage</th>
<th>Filtration Rating</th>
<th>Filter Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>0340</td>
<td>BC1</td>
<td>7 = 7 μm</td>
<td>KF1</td>
</tr>
<tr>
<td>0600</td>
<td>HT1</td>
<td>10 = 10 μm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>30 = 30 μm</td>
<td></td>
</tr>
</tbody>
</table>

- Highlighted product eligible for QuickDelivery

Note:
- Based on Diesel Fuel Type A, Water Concentration: 1500 ppm
How to Build a Valid Model Number for a Schroeder HDP Housing Supplied w/ Element:

<table>
<thead>
<tr>
<th>BOX 1</th>
<th>BOX 2</th>
<th>BOX 3</th>
<th>BOX 4</th>
<th>BOX 5</th>
<th>BOX 6</th>
<th>BOX 7</th>
<th>BOX 8</th>
<th>BOX 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDP</td>
<td>KF1</td>
<td>340</td>
<td>BC1</td>
<td>10</td>
<td>W</td>
<td>1</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Example:

<table>
<thead>
<tr>
<th>BOX 1</th>
<th>BOX 2</th>
<th>BOX 3</th>
<th>BOX 4</th>
<th>BOX 5</th>
<th>BOX 6</th>
<th>BOX 7</th>
<th>BOX 8</th>
<th>BOX 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDP</td>
<td>KF1</td>
<td>600</td>
<td>BC1</td>
<td>10</td>
<td>W</td>
<td>1.X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For other options or configurations not listed, please contact factory.

Notes:

For other options or configurations not listed, please contact factory.
Heavy-Duty Diesel PreCare Duplex Filter

Applications

- INDUSTRIAL
- MOBILE VEHICLES
- MARINE
- AGRICULTURE
- BULK FUEL FILTRATION

Application Introduction:
The Reason for Better Engine Filtration

The Heavy-Duty Diesel PreCare Duplex Filter is an advanced system for diesel pre-filtration which protects equipment OEMs and operators from costly service calls and downtime. The duplex configuration consists of an assembly with multiple filter housings, which are connected by a change-over ball valve with a simple, single lever operation. The HDPD is available in the familiar BC (manual drain) or HT (auto drain) version.

Features and Benefits

- Simple, single-lever change-over ball valve for seamless operation and service
- Manual or fully automatic Water-In-Fuel (WIF) sensor
- Optional fuel pre-heater and water sensor
- Small envelope size offers greater flexibility in mounting locations
- Low investment cost due to the economical design
- Long service life of the element yields low operating costs
- Easy installation due to various porting configurations
- Easy adaption to the on-board power supply
- Unsurpassed water removal for ULSD

Filter Housing Specifications

- Flow Rating: up to 476 gph (up to 1800 lph)
- Operating Pressure: 14.5 psia, (<1 bar absolute) suction side application
- Temperature Range: BC: -40°F to 194°F (-40°C to 90°C) HT: -4°F to 194°F (-20°C to 90°C) *for extended ranges, contact factory
- Nominal Voltage: 24V DC (12V DC is optional for heater or water sensor)
- Rated Power Fuel Preheating: 300W
- Weight: contact factory for your specific model code weight
- Water Separation Efficiency: >95% to ISO CD 16332
- Porting Thread: 340 BC: M22x1.5 600 BC: M27x2.0, SAE - 12 ORB (optional) 600 HT: G 3/4" (BSPP)
Metric dimensions in (). Installation instructions included on element
Dimensions shown are inches (millimeters) for general information and overall envelope size only.
For complete dimensions please contact Schroeder Industries to request a certified print.
Note: for dimensions of other configurations, please contact the factory
Note: for marine applications requiring filter housings constructed of ductile iron, please contact the factory
Heavy-Duty Diesel PreCare Duplex Filter

Filtration Ratio Per ISO 19438

<table>
<thead>
<tr>
<th>Particulate Element</th>
<th>Filtration Ratio Per ISO 19438</th>
<th>Dirt Retention Per ISO 19438</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 μm</td>
<td>n > 10 μm (c)</td>
<td>300 mbar > 42 g</td>
</tr>
<tr>
<td></td>
<td>> 99%</td>
<td></td>
</tr>
</tbody>
</table>

Dirt Retention Per ISO 19438

<table>
<thead>
<tr>
<th>Coalescing Element</th>
<th>Suction Side Coalescing Per ISO CD 16332</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 μm</td>
<td>Max Flow</td>
</tr>
<tr>
<td></td>
<td>158 gal/h</td>
</tr>
</tbody>
</table>

Flow Direction: Outside In
Element Nominal Dimensions:
3.8” (95.6 mm) O.D. x 7.0” (177.2 mm) long - 340 Size
3.8” (95.6 mm) O.D. x 9.4” (238.2 mm) long - 600 Size

Note: For additional HDP performance information, please contact the factory

Fuel Oils

- ULSD15 and similar petroleum diesels
- Biodiesel blends
- Synthetic diesel and blends

Note: For Flow and Pressure information, please contact the factory

Fluid Compatibility

- Fuel Oils
 - ULSD15 and similar petroleum diesels
 - Biodiesel blends
 - Synthetic diesel and blends

Replacement Elements

<table>
<thead>
<tr>
<th>Size</th>
<th>Evolution Stage</th>
<th>Filtration Rating</th>
<th>Filter Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>0340</td>
<td>BC1</td>
<td>7 = 7 μm</td>
<td>KF1</td>
</tr>
<tr>
<td>0600</td>
<td>HT1</td>
<td>10 = 10 μm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>30 = 30 μm</td>
<td></td>
</tr>
</tbody>
</table>
How to Build a Valid Model Number for a Schroeder HDPD Housing Supplied w/ Element:

<table>
<thead>
<tr>
<th>BOX 1</th>
<th>BOX 2</th>
<th>BOX 3</th>
<th>BOX 4</th>
<th>BOX 5</th>
<th>BOX 6</th>
<th>BOX 7</th>
<th>BOX 8</th>
<th>BOX 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDPD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KF1</td>
<td>600</td>
<td>HT1</td>
<td>10</td>
<td>A</td>
<td>1</td>
<td>X</td>
<td>AS1</td>
<td></td>
</tr>
</tbody>
</table>

Example: NOTE: Only box 9 may contain more than one option

<table>
<thead>
<tr>
<th>BOX 1</th>
<th>BOX 2</th>
<th>BOX 3</th>
<th>BOX 4</th>
<th>BOX 5</th>
<th>BOX 6</th>
<th>BOX 7</th>
<th>BOX 8</th>
<th>BOX 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDPD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KF1</td>
<td>600</td>
<td>HT1</td>
<td>10</td>
<td>A</td>
<td>1.X</td>
<td>AS1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- The HDPD will have the number of housings needed to support the flow rate specified on each side (ex. HDPD 1200 = 2x HDP 600 left side & 2x HDP 600 right side)
Importance of Biofuel Treatment

Most biodiesel is made from waste vegetable oil (WVO) collected from catering and food production facilities or from virgin feedstocks. The WVO often contains high levels of Free Fatty Acids, moisture, as well as solids, other impurities and contaminants. The solids can be filtered out using correct filtration procedures. The water must be removed to meet Tier 4 engine requirements less than 200 ppm. Pre-treatment of WVO prior to the transesterification process is important. Free Fatty Acids (FFA), oil contaminants and moisture need to be effectively removed in order to ensure a clean, irreversible reaction. WVO typically contains from 2-5% free fatty acids. If the Free Fatty Acids are above this amount, it is very difficult to produce biodiesel without an acid esterification process. The Free Fatty Acids number is determined by a filtration process. A full description of this process is available on request.

A common problem with biodiesel producers is instead of a clear separation between the biodiesel and the glycerine after the reaction and settling process, they end up with a semi-solid, gelatinous mixture that cannot be purified and used as fuel. This is an indication that the oil contained excessive Free Fatty Acids and/or water.

Raw vegetable oils that are produced by pressing oilseeds, such as canola, mustard, soybeans or other virgin oils like sugar cane or algae, can also be converted to biodiesel. The Free Fatty Acids level of these raw oils are usually 0.5% or less, which is low enough not to pose a problem. However, the oil may contain gum compounds that can create sludge deposits in the processing equipment, and can make it difficult to separate the glycerine at the end of the reaction.

Choose from our range of filter elements (reusable or disposable) and a range of filter housings to suit all budgets and production levels. Schroeder Fuel Filtration can supply individual components, as well as complete filtration systems. Irrespective of your budget and production levels, Schroeder Fuel Filtration has a solution to suit your operation.
ColdClear®

The ASTM D6751 Cold Soak Filtration Test is leaving many biodiesel producers and consumers “out in the cold.” In response, Schroeder Fuel Filtration is proud to present ColdClear®, a proprietary multi-stage separation technology designed specifically to ensure that biodiesel products conform to this ASTM standard for cold flow properties. The ColdClear® System consists of a three-stage bank of filters using a combination of filtration and adsorption principles to capture compounds that could cause plugging or crystallization in biodiesel fluids. Notably, ColdClear® is the first multi-stage treatment system for solving the cold soak filtration dilemma in B-100 biodiesel and biodiesel blends in a single pass.

The Cold Flow Dilemma

Fuel filter plugging, both in the ASTM procedure and in the field, has been researched significantly with a range of answers to the single question. Most producers and consumers assumed poor cold flow performance was due to feedstock issues, or even poor biodiesel quality. When data started coming in from biodiesel producers across the USA, the answer became even more confusing. A wide range of cold soak results were found for biodiesel samples from a wide range of feedstocks and an even wider range of producers. Obviously, the cold flow problem was not just quality or feedstock dependent.

Why Cold Soak Matters

Cold flow problems can cripple entire fleets during winter months, as evidenced by widespread reports regarding plugged fuel filters, plugged tank filters, and in some instances, even gelling in storage situations. The ASTM Test is performance-based, and designed to aid fleet managers in understanding the gelling potential of fuel during winter operation. Many researchers believed the key culprits were sterol glucosides and monoglycerides produced during the transesterification reaction. While these compounds were found to be in some samples, other biodiesel samples with low concentrations of these compounds were found to fail the cold soak test. In addition, many samples of biodiesel blends gathered due to plugging instances were found to have water and petroleum-based diesel contaminants on the filter.

Why ColdClear® is the Solution

Schroeder Fuel Filtration took this data into consideration in developing ColdClear®, a multi-stage filtration/adsorption system that ensures any potential factors that would initiate crystallization or plugging on the filter are dramatically reduced. By sequentially removing certain impurities that create a higher than normal likelihood of surface crystallization on the filter, our ColdClear® technology ensures that your biodiesel can meet the ASTM specification for cold soak filtration. It also ensures that fleet customers are receiving the very highest quality biodiesel and will minimize system plugging quality issues. ColdClear® is effective for B100 and a range of diesel blends, meaning that producers, distributors or even fleet consumers of biodiesel blends can use it.

The cartridges are disposable and easy to remove from the housings. The cartridges can be changed in minutes, which means very little downtime between production runs. Each bank of cartridges is rated to treat a fixed volume of B100 biodiesel, while biodiesel blends are scaled by the blend percentage.

All housings have the option for test points installed in the base. The first housing can be equipped with a visual or electrical differential pressure indicator. Because differential pressure is not a relevant indicator of life for the cartridges in the latter two housings, an indicator is not offered for stage 2 & 3 housings.
- ColdClear® is a three-stage system with all filters mounted in series on a single skid
- The first stage serves as a pre-filter and captures solid particulates down to three microns in size
- Stages 2 and 3 utilize custom design elements that combine adsorption technologies with the proven effectiveness of Schroeder’s high efficiency Excel-ZPlus® synthetic filtering media
- Multiple units can be employed in parallel to meet higher flow requirements
- The ColdClear® System can be easily integrated into existing plant piping environments
- If multiple units are required, Schroeder Fuels offers a range of monitoring options to ensure proper operation of the filter banks
- The essence of the ColdClear® technology is the removal of crystallization precursors from the biodiesel or biodiesel blend. Therefore, knowing the exact flow rate of your system is essential for the ColdClear® System to be properly sized and configured for a specific application.
- In-plant treatment of biodiesel (B100) to conform to ASTM standards prior to blending or shipment
- In-plant treatment of biodiesel blends (ex. B5, B10, etc) to ensure blended biodiesel meets or exceeds cold flow specifications
- For use in diesel fuel storage and distribution systems where B100 or biodiesel blends are stored and distributed to ensure shipped blends conform to ASTM specifications
- Large fleet terminals that have on-site diesel (and biodiesel blend) storage to ensure tight adherence to cold flow standards
- Unit must be wet for at least 10 hours before use.

Specifications

<table>
<thead>
<tr>
<th>Description</th>
<th>ICF</th>
<th>BDF</th>
<th>BDA</th>
<th>GHPF</th>
<th>GHCF</th>
<th>QCF</th>
<th>BDS</th>
<th>BDS2</th>
<th>BDS3</th>
<th>BDS4</th>
<th>LVH-F</th>
<th>LVH-C</th>
<th>BDFC</th>
<th>BDFP</th>
<th>BDC</th>
<th>HDP</th>
<th>HDPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow gpm (L/min):</td>
<td>5 (19)</td>
<td>15 (57)</td>
<td>45 (170)</td>
<td>60 (225)</td>
<td>75 (280)</td>
<td></td>
</tr>
<tr>
<td>Throughput (gal):</td>
<td>15,000</td>
<td>40,000</td>
<td>120,000</td>
<td>160,000</td>
<td>200,000</td>
<td></td>
</tr>
<tr>
<td>Max Oper Press psi (bar):</td>
<td>150 (10.3)</td>
<td>150 (10.3)</td>
<td>150 (10.3)</td>
<td>150 (10.3)</td>
<td>150 (10.3)</td>
<td></td>
</tr>
<tr>
<td>Oper Temp °F:</td>
<td>70 Optimal; Allowable 40-100</td>
<td></td>
</tr>
<tr>
<td>Element Bowl Material:</td>
<td>Steel</td>
<td>Aluminum</td>
<td>Aluminum (Pod arrangement)</td>
<td>Aluminum (Pod arrangement)</td>
<td>Aluminum (Pod arrangement)</td>
<td></td>
</tr>
<tr>
<td>Porting Base & Cap Mat’l:</td>
<td>Cast Aluminum</td>
<td>Aluminum Housing Construction: Steel</td>
<td>Housing Construction: Steel</td>
<td>Housing Construction: Steel</td>
<td>Housing Construction: Steel</td>
<td></td>
</tr>
<tr>
<td>Element Change Clearance in (mm):</td>
<td>8.5 (215)</td>
<td>33.8 (859)</td>
<td>33.8 (859)</td>
<td>33.8 (859)</td>
<td>33.8 (859)</td>
<td></td>
</tr>
<tr>
<td>Pre-filter Cartridge P/N:</td>
<td>BCCPREFILTER</td>
<td>BCC39QPRE</td>
<td>BCC39QPRE</td>
<td>BCC39QPRE</td>
<td>BCC39QPRE</td>
<td></td>
</tr>
<tr>
<td>Polish Cartridge P/N:</td>
<td>BCCPOLISH</td>
<td>BCC39QPOL</td>
<td>BCC39QPOL</td>
<td>BCC39QPOL</td>
<td>BCC39QPOL</td>
<td></td>
</tr>
<tr>
<td>No. of Housings per Stage:</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>No. of Cartridges per Stage:</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Cartridge Case Lot Qty:</td>
<td>12</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
The above results are based on using the best feedstock available.
ColdClear® BCC100 Series

Filter Model Number Selection

<table>
<thead>
<tr>
<th>BOX 1</th>
<th>BOX 2</th>
<th>BOX 3</th>
<th>BOX 4</th>
<th>BOX 5</th>
<th>BOX 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCC100</td>
<td>V</td>
<td>P16</td>
<td>P16</td>
<td>D5C</td>
<td>UU</td>
</tr>
</tbody>
</table>

Example: NOTE: One option per box

BCC100 VP16 P16 D5C UU = BCC100VP16P16D5CUU

BOX 1
- Filter Series
 - BCC100

BOX 2
- Seals
 - V = Viton®

BOX 3
- Outlet Porting
 - P16 = 1" NPT
 - F16 = 1" SAE 4-bolt flange code 61

BOX 4
- Outlet Porting
 - P16 = 1" NPT
 - F16 = 1" SAE 4-bolt flange code 61

BOX 5
- Dirt Alarm®
 - Omit = None
 - D5 = Visual Pop-up
 - D5C = Visual Pop-up in cap
 - MS10 = Electrical w/DIN connector (male end only)

BOX 6
- Test Points
 - Omit = None
 - UU = Test Points in all housings

NOTES:
- Option UU is not available with D5 or MS10 indicator
- Box 2. Viton® is a registered trademark of DuPont Dow Elastomers

Diagram:
- Dimensions shown are inches (millimeters) for general information and overall envelope size only.
- Metric dimensions in ().
- For complete dimensions please contact Schroeder Industries to request a certified print.

Replacement Cartridges

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCCPREFILTER</td>
<td>Stage 1 Cartridge (3 required)</td>
</tr>
<tr>
<td>BCCPOLISH</td>
<td>Stage 2 & 3 Cartridges (3 required for each housing)</td>
</tr>
</tbody>
</table>

Stage 1 Cartridge:
- BCCPREFILTER

Stage 2 & 3 Cartridges:
- BCCPOLISH
How to Build a Valid Model Number for a Schroeder BCC300:

<table>
<thead>
<tr>
<th>BOX 1</th>
<th>BOX 2</th>
<th>BOX 3</th>
<th>BOX 4</th>
<th>BOX 5</th>
<th>BOX 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCC300</td>
<td>V</td>
<td>P32</td>
<td>P32</td>
<td>D5C</td>
<td>UU</td>
</tr>
</tbody>
</table>

Example: NOTE: One option per box

BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 6 = BCC300VP32P32D5CUU

Filter Series

- BCC300

Seals

- V = Viton®

Inlet Porting

- P24 = 1 1/2" NPT
- P32 = 2" NPT
- F32 = SAE 4-bolt flange code 61

Outlet Porting

- P24 = 1 1/2" NPT
- P32 = 2" NPT
- F32 = SAE 4-bolt flange code 61

Dirt Alarm®

- Omit = None
- D5 = Visual Pop-up
- D5C = Visual Pop-up in cap
- DPG = Differential Pressure Gage
- MS10 = Electrical w/ DIN connector (male end only)

Test Points

- Omit = None
- UU = Test Points in all housings

NOTES:

- Box 2. Viton® is a registered trademark of DuPont Dow Elastomers
ColdClear® BCC900 Series

Filter Model Number Selection

How to Build a Valid Model Number for a Schroeder BCC900:

Example: NOTE: One option per box

<table>
<thead>
<tr>
<th>BOX 1</th>
<th>BOX 2</th>
<th>BOX 3</th>
<th>BOX 4</th>
<th>BOX 5</th>
<th>BOX 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCC900</td>
<td>V</td>
<td>P48</td>
<td>P48</td>
<td>RD5</td>
<td>UU</td>
</tr>
</tbody>
</table>

= BCC900VP48P48RD5UU

NOTES:

Box 2. Viton® is a registered trademark of DuPont Dow Elastomers

Stage 1 Cartridge: BCC39QPRE
Stage 2 & 3 Cartridges: BCC39QPOL
How to Build a Valid Model Number for a Schroeder BCC1200:

Example:

```
BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 6
```

Notes:
- Box 2. Viton® is a registered trademark of DuPont Dow Elastomers.

Filter Series Seals Inlet Porting Outlet Porting

<table>
<thead>
<tr>
<th>BOX 1</th>
<th>BOX 2</th>
<th>BOX 3</th>
<th>BOX 4</th>
<th>BOX 5</th>
<th>BOX 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCC1200</td>
<td>V = Viton®</td>
<td>P48</td>
<td>P48</td>
<td>RD5</td>
<td>UU</td>
</tr>
</tbody>
</table>

Stage 1 Cartridge: BCC39QPRE

Stage 2 & 3 Cartridges: BCC39QPOL

Model Number Selection

Dirt Alarm® Test Points

- Omit = None
- RDS = Visual Pop-up
- DPG1 = Differential Pressure Gage
- RMS10 = Electrical w/ DIN connector (male end only)

Test Points

- Omit = None
- UU = Test Points in all housings
ColdClear® BCC1500 Series

How to Build a Valid Model Number for a Schroeder BCC900:

Example: NOTE: One option per box

BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 6
BCC1500 V P48 P48 RD5 UU = BCC1500VP48P48RD5UU

BOX 1
Filter Series
BCC1500

BOX 2
Seals
V = Viton®

BOX 3
Inlet Porting
P48 = 3” NPT
A48 = 3” ANSI 150# Flange

BOX 4
Outlet Porting
P48 = 3” NPT
A48 = 3” ANSI 150# Flange

BOX 5
Dirt Alarm®
Omit = None
RD5 = Visual Pop-up
DPG1 = Differential Pressure Gage
RMS10 = Electrical w/ DIN connector (male end only)

BOX 6
Test Points
Omit = None
UU = Test Points in all housings

NOTES:
Box 2. Viton® is a registered trademark of DuPont Dow Elastomers
Advantages of Online Monitoring

There are advantages to using online monitoring in replacement of bottle sampling when testing for cleanliness requirements.

Consider the following factors when comparing bottling sampling to online sampling:

- What is the cost of a bottle sample (downtime, manpower, etc)?
- How hard is it to take a proper bottle sample?
- Three samples taken at the same time and all come back with different ISO codes
- What does the bottle sample really tell you?
- Can you relate the information from the bottle sample to the machine?

TestMate® Contamination Monitor | TCM

- Measures particles in four (4) sizes: >4, >6, >14, >21 microns
- In-line or manifold mounting
- ISO or SAE codes can be output in 4-20 mA analog signal
- Compatible with standard mineral fluids & phosphate esters
- Display and keypad can be rotated (up to 270°)
- Inlet and outlet ports are interchangeable (bi-directional, *without manifold only)

HY-TRAX® Manually Controlled Fluid Sampling System

- Provides local visibility to the fluid condition of critical systems while integrating micro VSD (Variable Speed Drive)
- Manual rheostat VSD pump controller allows user to adjust pump flow for optimal sensor readings in variable conditions
- L-ported (QLF) or Inline (QF) allows for installation flexibility
- It allows a user to retrieve ISO cleanliness levels from a reservoir tank or a low pressure line (50 psi max).

HY-TRAX® Telematics Communications Module with Remote Controlled Sampling System

- Provides remote visibility to the fluid condition of critical systems.
- The HY-TRAX® Remote Oil Contamination Communications Module allows remote access via the Internet and smart devices to fluid particle counts, temperature and percent water saturation levels (optional) displayed on a customizable dashboard. The system collects data from any existing TestMate® Contamination Monitor (TCM) and/or TestMate® Water Sensor (TSM) and the communications module transmits this data via GSM cellular at scheduled intervals or on demand. Users can receive alerts via email when a fluid’s ISO contamination code or water saturation level (optional) reaches user defined critical levels.
- The HY-TRAX® Communications Module will provide maintenance managers with the visibility and vital information necessary to pro-actively schedule preventative maintenance on local and remote equipment. Maintenance decisions can now be based on accurate and real-time data.
- The communications module components are mounted and housed in a rugged IP 40 enclosure.
- Can be utilized when the hydraulic system provides proper flow and pressure to TCM.
Features and Benefits

- Ideal for large reservoir with high return flow
- Durable steel housing
- Replaceable element
- Unique Oil Mist Trap design
- Optional pressure indicator

- Unique air flow design with suction tube as splash protection and protection against absorbent getting into the tank
- 2 stages of absorbent provide optimal combination of drying efficiency and water retention
- Pleated air filter with 2 μm filtration rating
- Reusable base with check (intake) and bypass (outflow) valves
- Check valves prevent absorbents being saturated during system downtime
- Bypass valves divert out flow away from water removal media to preserve its life
- Robust Zinc die-casting connection piece with integrated anti-splash baffles
- Replacement cartridge available in 3 different sizes
The Importance of Final Polishing

Irrespective of the wash process you choose for your production facility, final polishing of biodiesel is essential to ensure that fuel, once washed, is free of solid contaminants, moisture, production and wash residues. As the final step in the production process, it gives the producer total peace of mind that the fuel produced is clean and dry. Final polishing is a fundamental part of the overall production process and one that is far too frequently overlooked. It is also overlooked in dry wash purification using ion exchange resin as small particles can migrate downstream.

Final fuel quality and in-house quality control are key aspects in successful biodiesel production. Batch consistency and traceability is the main difference between successful and unsuccessful producers.

Final polishing is the last production stage in order to achieve stringent industry quality standards. Irrespective of the wash method used, final polishing is required to remove microscopic contaminants invisible to the naked eye, that could result in serious engine damage.

K9 Medium Pressure Filter

- Base-ported in-line filter available in three different lengths
- Extremely versatile multiple inlet and outlet porting possibilities
- Stacked K-size elements require less than 9” clearance to change elements
- Available with cleanable metal mesh or high efficiency synthetic Excel-ZPlus® elements
- Please note Viton® seals required for this application

QF5 In-Line Filter

- Element changeout from the top minimizes oil spillage
- Available with optional core assembly to accommodate coreless elements
- Offered with standard Q, QPML deep-plated and QCLQF coreless elements in 16” and 39” lengths with standard Viton® seals
- Offered in pipe, SAE straight thread, and flange porting
- Integral inlet and outlet test points are standard in all models
- WQF5 model for water service also available
- Various Dirt Alarm® options

Note:
1. Please see our Hydraulics and Lube Catalog (L-2520C) for drawings and complete sizing information.
MFS / MFD
Mobile Filtration Systems

X Series Skids

- Modular base eliminates hoses between components and minimizes leakage
- Base-ported filter provides easy element service from the top cap
- Single, double and triple bowl length option allows the flexibility of additional dirt-holding capacity
- D5 Dirt Alarm® indicates when filter element needs changed
- Cleans up oil faster – 7 gpm and 14 gpm models available
- Hoses and connection tubes included
- Drip pan catches oil before it falls to the ground
- Integral suction strainer protects pump
- Off-line stationary system available
- Two 7/16 – 20 UNF sampling ports included on all models
- Please note Viton® seals required for this application

- Protects and extends the life of expensive components Features
- Minimizes downtime and maintenance costs
- Designed to handle high viscosity oils up to 25,000 SUS (see Skid Selection; previous page)
- Many component combinations and variable starter options allow the flexibility to match specific user needs
- Four wheel cart option provides product portability
- Integral drip pan with drain plug protects oil from spilling on ground
- Sample valves provided at filter base for fluid sampling
- Market leading Schroeder Excel-ZPlus® synthetic filtering media provides for quick, efficient clean up with maximum element life
- Availability of all plastic, environmentally friendly, coreless elements for QF15 housings (X1-X6 only)
- Please note Viton® seals required for this application

Notes:
1. Please see our Filter Systems Catalog (L-2681C) for drawings and complete sizing information.
The FluidControl Unit FCU 1315 series combines the advantages of the portable contamination measurement units with the measurement technology of the TestMate® Contamination Monitor (TCM) and TWS (TestMate® Water Sensor), in a portable, field-ready package for diesel fuel applications.

The FCU 1315 is a portable service unit and is designed for temporary measurement of solid particle contamination and water saturation in diesel storage, diesel transfer and diesel filling applications.

The FCU 1315 will measure contamination levels of diesel fuel, as well as mineral based hydraulic oils compatible with Viton® seals. The FCU 1315 is not compatible with water glycol fluids.

The integrated pump and the hoses with test point connections, which are included with the FCU 1315, allow operation on diesel fuel storage tanks and transfer circuits, as well as on hydraulic reservoirs, control circuits, and pressure circuits.

To ensure safe operation with diesel fuel, the FCU 1315 is equipped with a grounding wire, along with an integral temperature monitoring system to ensure the device switches off when operated above the critical temperature of diesel fuel (113°F, 45°C).

Specifications

<table>
<thead>
<tr>
<th>General Data:</th>
<th>Self-Diagnosis:</th>
<th>Continuously with error indication via status LED and display</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured Value:</td>
<td>ISO code / SAE Class / NAS Class / Saturation Level / Temperature</td>
<td></td>
</tr>
<tr>
<td>Measuring Range:</td>
<td>Display from ISO code 9/8/7 (MIN) to ISO code 25/24/23 (MAX)</td>
<td>Calibrated within the range ISO 13/11/10 to 23/21/18</td>
</tr>
<tr>
<td>Saturation level 0 to 100% / Temperature -13°F to 212°F (-25°C to 100°C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accuracy:</td>
<td>± 1/2 ISO class in the calibrated range / ± 2 % Full scale max for Water Sat. and Temp.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Material of Seals:</th>
<th>FPM seals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient Temperature Range:</td>
<td>32°F to 113°F (0°C to 45°C)</td>
</tr>
<tr>
<td>Storage Temperature Range:</td>
<td>-40°F to 176°F (-40°C to +80°C)</td>
</tr>
<tr>
<td>Dimensions (cover closed):</td>
<td>9.06” H x 16.14” L x 13”D</td>
</tr>
<tr>
<td>IP Class:</td>
<td>IP50 in operation, IP67 when closed</td>
</tr>
<tr>
<td>Weight:</td>
<td>Approx. 29 lbs (13 kg) without accessories</td>
</tr>
</tbody>
</table>

With Diesel According to

- ASTM D975 4-D or DIN EN 590:
 - IN: 0 psi (0 bar)
 - OUT: 0 psi (0 bar)
Hydraulic Data:

Operating Pressure:
- IN: -7.25 to 650 psi (-0.5 to 45 bar)
- OUT: 0 to 7.5 psi (0 to 0.5 bar)

with Adapter for Pressure Lines:
- IN: 217 to 5000 psi (15 to 345 bar)
- OUT: 0 to 7.5 psi (0 to 0.5 bar)

Pressure Max.: 5000 psi (345 bar)

Permissible Viscosity Range: 33 to 1622 SUS (1.5 to 350 cSt)

Fluid Temperature Range: 32°F to 158°F (0°C to +70°C), or up to 113°F (45°C) for diesel fuel

Electrical Data:

Power Supply Voltage: 24 VDC ± 20%, residual ripple < 10%

Max. Power / Current Consumption: 100 Watt / 4 A

Interface: Plug connection, 5-pole, male, M12x1 and USB

How to Build a Valid Model Number for a Schroeder FCU:

BOX 1
BOX 2
BOX 3
BOX 4
BOX 5
BOX 6

Model Number Selection

FCU 1315

Series

<table>
<thead>
<tr>
<th>Box 1</th>
<th>Box 2</th>
<th>Box 3</th>
<th>Box 4</th>
<th>Box 5</th>
<th>Box 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCU</td>
<td>1315</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Pump Option

<table>
<thead>
<tr>
<th>Box 5</th>
<th>Box 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 = with Integral Pump</td>
<td>U = 24 V DC</td>
</tr>
</tbody>
</table>

Integral Sensor

AS = TestMate® Water Sensor

Options

<table>
<thead>
<tr>
<th>Box 5</th>
<th>Box 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omit = None</td>
<td>1 = 100-240 V AC, 50/60 Hz, 1 Phase, 5 A Power Supply Adapter</td>
</tr>
</tbody>
</table>

We do not guarantee the accuracy or completeness of this information. The information is based on average working conditions. For exceptional operating conditions, please contact our technical department. All details are subject to technical changes.

Items supplied with FCU 1315-4-U-AS-1 include:

- FluidControl Unit (FCU 1315)
- Power supply AC adapter with connecting cables to supply voltage for Europe, USA/Canada, UK, Australia, and Japan
- Adapter for pressure lines
- Adapter for clear suction hose
- Inlet pressure hose with screw connection for 1620 test point, length = 2 meters (approx. 79 inches)
- Inlet suction pipe (metallic) for bottle sampling
- 2x suction/return hoses, clear, quick couple terminations, 1 meter (approx. 39 inches)
- Operation Manual & Calibration Certificate
- CD Rom of FluMoS Light Software
- USB Flash Drive (which includes Operation and Maintenance Instructions in other languages)
- Grounding Terminal

Accessories:

- Battery Pack (approx. 5 hours of use) Part No. 3504605
- Field Verification Startup Kit - Part No. 3443253
- Field Verification Kit (fluid only) - Part No. 3443249
Diesel Fuel Quality Analysis Kits

Fuel analysis can identify potential causes for fuel filter plugging, smoking, loss of power, poor injector performance, malfunctioning throttle position sensors and sticking valves. Testing also confirms a diesel fuel’s sulfur content, biodiesel content and compliance with manufacturer specifications and standards for cleanliness that could affect equipment warranty requirements.

Schroeder Industries offers Troubleshooting and Diesel fuel quality test packages. All packages include pre-paid testing and the required number of fuel containers for sample.

*Total sample volume 32 oz required for all tests listed below

Complete Fuel Quality and fuel filter ability | Fuel Stability Bio Content Test

<table>
<thead>
<tr>
<th>Test Package</th>
<th>P/N</th>
<th>Includes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete Diesel Fuel Analysis</td>
<td>02098012</td>
<td>*Filter Plugging Free Contamination</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*Filter Plugging</td>
</tr>
<tr>
<td></td>
<td></td>
<td>All Cultures of Microbes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*Filter Plugging</td>
</tr>
<tr>
<td>*Total sample volume 32 oz required for all tests listed below</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contamination Tests | Schroeder P/N: 02098006 | Includes | Sample Amount |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>*Identifies contamimation from external sources - oil, biological growth, water, sediment</td>
<td>ICP</td>
<td>2mL</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flash Point</td>
<td>200mL</td>
</tr>
<tr>
<td></td>
<td>*Identifies contamination to be the result of a change in the fuel's physical properties - low thermal stability may require use of an asphaltene conditioner</td>
<td>Thermal Stability</td>
<td>120mL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water and Sediment</td>
<td>200mL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bacteria, Fungi, Mold</td>
<td>120mL</td>
</tr>
</tbody>
</table>

Smoking Tests | Schroeder P/N: 02098007 | Includes | Sample Amount |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>*Identifies low cetane index or water contamination - loss of power, white smoke</td>
<td>Sulfur</td>
<td>50mL</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cetane Index</td>
<td>100mL</td>
</tr>
<tr>
<td>*Identifies excessive sulfur content - black smoke</td>
<td>API Gravity</td>
<td>400mL</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Distillation</td>
<td>200mL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water and Sediment</td>
<td>200mL</td>
</tr>
</tbody>
</table>

Filter Plugging Tests | Schroeder P/N: 02093395 | Includes | Sample Amount |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>*Identifies contamination from external sources specific to filter plugging - high particle count, biological growth</td>
<td>Thermal Stability</td>
<td>120mL</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bacteria, Fungi, Mold</td>
<td>120mL</td>
</tr>
<tr>
<td>*Identifies contamination due to a change in the fuel's physical properties - low thermal stability or insufficient cold weather capability for operating environment</td>
<td>Pour Point</td>
<td>100mL</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cloud Point</td>
<td>100mL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cold Filter Plug Point</td>
<td>100mL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Particle Count</td>
<td>80mL</td>
</tr>
</tbody>
</table>

Cleanliness Tests | Schroeder P/N: 02098008 | Includes | Sample Amount |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>*Identifies water contamination - can lead to smoking, biological growth and corrosion</td>
<td>Karl Fischer</td>
<td>10mL</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Particle Count</td>
<td>80mL</td>
</tr>
<tr>
<td>*Identifies particulate contamination - can result in extreme wear in high pressure fuel systems which may cause premature injector failure</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Wear Prevention Tests | Schroeder P/N: 02098009 | Includes | Sample Amount |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>*Identifies cause of wear - water contamination, excessive particles or insufficient lubricity</td>
<td>Karl Fischer</td>
<td>10mL</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Particle Count</td>
<td>80mL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lubricity</td>
<td>20mL</td>
</tr>
</tbody>
</table>

Notes: All fuel samples must be shipped via UPS Ground. Includes prepaid testing and one fuel can per product sample.
Diesel Fuel Quality Analysis Kits

*Total sample volume 64 oz required for all tests listed below

<table>
<thead>
<tr>
<th>Summer Tests</th>
<th>Schroeder P/N: 02098010</th>
<th>Includes</th>
<th>Sample Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Identifies contamination from external sources - oil, biological growth, water, sediment</td>
<td>Flash Point</td>
<td>200mL</td>
<td></td>
</tr>
<tr>
<td>• Identifies contamination to be the result of a change in the fuel's physical properties - low thermal stability may require use of an asphaltene conditioner</td>
<td>Water and Sediment</td>
<td>200mL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kinematic Viscosity</td>
<td>2mL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sulfur</td>
<td>50mL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cetane Index</td>
<td>100mL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>API Gravity</td>
<td>400mL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Distillation</td>
<td>200mL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thermal Stability</td>
<td>120mL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bacteria, Fungi, Mold</td>
<td>120mL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ICP</td>
<td>2mL</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Winter Tests</th>
<th>Schroeder P/N: 02098011</th>
<th>Includes</th>
<th>Sample Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Identifies low cetane index or water contamination - loss of power, white smoke</td>
<td>Flash Point</td>
<td>200mL</td>
<td></td>
</tr>
<tr>
<td>• Identifies excessive sulfur content - black smoke</td>
<td>Water and Sediment</td>
<td>200mL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kinematic Viscosity</td>
<td>2mL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sulfur</td>
<td>50mL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cetane Index</td>
<td>100mL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>API Gravity</td>
<td>400mL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Distillation</td>
<td>200mL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thermal Stability</td>
<td>120mL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pour Point</td>
<td>100mL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cloud Point</td>
<td>100mL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bacteria, Fungi, Mold</td>
<td>120mL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ICP</td>
<td>2mL</td>
<td></td>
</tr>
</tbody>
</table>

Notes: All fuel samples must be shipped via UPS Ground. Includes prepaid testing and two fuel cans per product sample.
Biofuel Quality Measurement Tools

If you are a high volume producer, minutes count. Finding that you have produced dirty fuel an hour late can leave you with thousands of gallons of problem fuel. Online sensors can help you catch the problem before your customer does. While particle and moisture sensors will not tell you if your centane number is correct or if your flash point is acceptable; they will tell you how much particulate or moisture is in your biofuel. As the fuel passes the sensor, it can display a problem with a filter upstream and if the dry washing chemical (or any other particulate that could clog a fuel filter) is not being removed to standard.

Taking and examining samples during various stages of your production process can provide a priceless level of visibility to troubleshooting or even just understanding your current biodiesel production processes.

The samples below show how much the appearance of biodiesel changes as it progresses through the various stages of production. These samples were taken at key stages in the production process and clearly demonstrate the importance of effective filtration throughout.

1. WVO (Waste Vegetable Oil): Pre-filtered
2. Biodiesel after reaction and initial glycerin drain
3. After 8-hour settling-final glycerin drain
4. Dry washing using Magnesol. Sample taken from wash tank. Significant improvement in clarity and excellent pH neutralization at this stage. Magnesium silicate powder still clearly visible at base of sample bottle
5. Sample taken after the Biodiesel Wash Tower showing great clarity and further reduction in pH value
6. After final polishing using the K9. Final effective contaminant and moisture removal and yet further reduction in pH values. Cleanliness in accordance with ISO 4406: 16/14/11

The line of sample bottles below shows the difference between freshly produced, “dirty” biodiesel still highly contaminated with production chemicals (i.e. Methanol and NaOH left) through to the washed and polished clean samples (right). By adding a small amount of water to a sample bottle containing biodiesel, the water will collect at the base of the bottle, and the clarity of the water is a very good indicator of the level of impurities present. This in effect is a mini “wet wash.”
Description

Schroeder Industries has developed the BestFit replacement element series based upon the Parker FBO Series filters, providing replacements for both particulate and water removal elements in the field. The BestFit Coalescing design allows for our patented coalescing water removal filtration technology to be used within the Parker FBO Series filters found in the field today, providing improvements in water removal efficiency* and a improvement in particulate retention** and filter element service life. The BestFit Particulate design incorporates the same advantages our Z-media brings to fuel filtration with improved particulate removal efficiency and capacity. Along with improved performance comes a design that incorporates components that prevent degradation and eliminate the potential for corrosion.

*water removal efficiency tested at 15 gpm according to fuel/water separation test procedure SAE J1488:2010 **particulate retention was determined according to multi-pass test method ISO 16889:2008(E)

Features & Benefits

- Schroeder Industries SBFC element uses patented, three stage coalescing filtration technology
- Schroeder Industries SBFD element uses fully synthetic, multi-layered Z-media filtration technology
- Synthetic filtration media eliminates degradation due to high water content fuel
- Stainless steel and polymer material of construction provide a robust and corrosion-resistant structure
- The SBFC element provides 1.88x the filtration surface of the OEM design
- The SBFC element performs greater than 99.5% efficient at removing particles smaller than 4 micron in size
- Patented three stage coalescing filtration technology for improvements in water removal efficiency and capacity
- Use of stainless steel support structure and polymer components prevent corrosion from high water content exposure
- Direct fitment into existing installations allow for immediate performance improvements with no modifications
- Coalescing technology can provide a significant reduction in operating costs in comparison to absorbing technology, due to the benefit of “bottomless” water removal capacity.

Element Specifications

- **Differential Pressure Rating:** 75 psid
- **Maximum Operating Temperature Range:** 225°F (°C)
- **End Cap Material:** Plastic
- **Center Tube Material (when included):** Stainless Steel
- **Seal Material:** Fluoroelastomer, FKM
- **Filter Element Length, Typical:** 10", 14"
- **Filtration Rating:** Particulate: 5, 10, 25 µm
 Coalescing: 5 µm
- **Degree of Separation:** 95%+
BestFit Elements — Parker FBO Elements

<table>
<thead>
<tr>
<th>Parker Racor Part Number</th>
<th>Filter Housing Used</th>
<th>Micron Rating</th>
<th>Function</th>
<th>Schroeder Model Code</th>
<th>Schroeder Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FBO 60331</td>
<td>FBO-10</td>
<td>5</td>
<td>Particulate</td>
<td>SBFD-FBO-10Z5V</td>
<td>7644662</td>
</tr>
<tr>
<td>FBO 60334</td>
<td></td>
<td>5</td>
<td>Water Absorbing</td>
<td>Consider SBFC-FBO-10Z5V</td>
<td>7644660</td>
</tr>
<tr>
<td>FBO 60328</td>
<td></td>
<td>5</td>
<td>Water Coalescing</td>
<td>SBFC-FBO-10Z5V</td>
<td>7644660</td>
</tr>
<tr>
<td>FBO 60354</td>
<td></td>
<td>10</td>
<td>Particulate</td>
<td>SBFD-FBO-10Z10V</td>
<td>7644664</td>
</tr>
<tr>
<td>FBO 60355</td>
<td></td>
<td>10</td>
<td>Water Absorbing</td>
<td>Consider SBFC-FBO-10Z5V</td>
<td>7644660</td>
</tr>
<tr>
<td>FBO 60353</td>
<td></td>
<td>10</td>
<td>Water Coalescing</td>
<td>Consider SBFC-FBO-10Z5V</td>
<td>7644660</td>
</tr>
<tr>
<td>FBO 60332</td>
<td></td>
<td>25</td>
<td>Particulate</td>
<td>SBFD-FBO-10Z25V</td>
<td>7644666</td>
</tr>
<tr>
<td>FBO 60335</td>
<td></td>
<td>25</td>
<td>Water Absorbing</td>
<td>Consider SBFC-FBO-10Z5V</td>
<td>7644660</td>
</tr>
<tr>
<td>FBO 60329</td>
<td></td>
<td>25</td>
<td>Water Coalescing</td>
<td>Consider SBFC-FBO-10Z5V</td>
<td>7644660</td>
</tr>
<tr>
<td>FBO 60340</td>
<td></td>
<td>5</td>
<td>Particulate</td>
<td>SBFD-FBO-14Z5V</td>
<td>7644663</td>
</tr>
<tr>
<td>FBO 60343</td>
<td></td>
<td>5</td>
<td>Water Absorbing</td>
<td>Consider SBFC-FBO-14Z5V</td>
<td>7644661</td>
</tr>
<tr>
<td>FBO 60337</td>
<td></td>
<td>5</td>
<td>Water Coalescing</td>
<td>SBFC-FBO-14Z5V</td>
<td>7644661</td>
</tr>
<tr>
<td>FBO 60357</td>
<td></td>
<td>10</td>
<td>Particulate</td>
<td>SBFD-FBO-14Z10V</td>
<td>7644665</td>
</tr>
<tr>
<td>FBO 60358</td>
<td></td>
<td>10</td>
<td>Water Absorbing</td>
<td>Consider SBFC-FBO-14Z5V</td>
<td>7644661</td>
</tr>
<tr>
<td>FBO 60356</td>
<td></td>
<td>10</td>
<td>Water Coalescing</td>
<td>Consider SBFC-FBO-14Z5V</td>
<td>7644661</td>
</tr>
<tr>
<td>FBO 60341</td>
<td></td>
<td>25</td>
<td>Particulate</td>
<td>SBFD-FBO-14Z25V</td>
<td>7644667</td>
</tr>
<tr>
<td>FBO 60344</td>
<td></td>
<td>25</td>
<td>Water Absorbing</td>
<td>Consider SBFC-FBO-14Z5V</td>
<td>7644661</td>
</tr>
<tr>
<td>FBO 60338</td>
<td></td>
<td>25</td>
<td>Water Coalescing</td>
<td>Consider SBFC-FBO-14Z5V</td>
<td>7644661</td>
</tr>
</tbody>
</table>
BestFit Elements — Parker FBO Elements

Filter Model Number Selection

How to Build a Valid Model Number for a BetterFit Element:

<table>
<thead>
<tr>
<th>BOX 1</th>
<th>BOX 2</th>
<th>BOX 3</th>
<th>BOX 4</th>
<th>BOX 5</th>
<th>BOX 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBF</td>
<td>D</td>
<td>FBO</td>
<td>10</td>
<td>Z5</td>
<td>V</td>
</tr>
</tbody>
</table>

Example: *NOTE: One option per box*

<table>
<thead>
<tr>
<th>BOX 1</th>
<th>BOX 2</th>
<th>BOX 3</th>
<th>BOX 4</th>
<th>BOX 5</th>
<th>BOX 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBF</td>
<td>D</td>
<td>FBO</td>
<td>10</td>
<td>Z5</td>
<td>V</td>
</tr>
</tbody>
</table>

= **SBFD-FBO-10Z5V**

NOTES:

Box 2. The SBF "C" (Box 2) is only available in a Z5 media configuration.

Filter Element Type

- SBF = Schroeder BestFit

Media Type

- D = Particulate Filtration
- C = Coalescing & Particulate Filtration

Filter Series

- FBO = Parker FBO

*for others, contact factory

Filter Material

- Z5 = 5 micron Z-media
- Z10 = 10 micron Z-media
- Z25 = 25 micron Z-media

Sealing Material

- V = Fluoroelastomer (FKM, Viton®)
BetterFit filter elements for diesel applications have been specially developed to filter high volumes of contamination from diesel fuel. The meshpack is made from the latest Optimicron® Diesel material and incorporates the innovative Helios technology for:

- Excellent dirt holding capacity
- Stable pleat structure
- Low Δp

BetterFit dewatering elements use materials specifically designed for coalescing and for separating water from diesel:

- Optimicron® Diesel element technology for possible two stage dewatering
- Coalescer elements with high efficiency pleated materials
- Separator elements with new innovative coating for safe water separation
- The Optimicron® Diesel element technology enables secure and efficient dewatering even when the water content of the diesel is low

How to Build a Valid Model Number for a BetterFit Element:

<table>
<thead>
<tr>
<th>BOX 1</th>
<th>BOX 2</th>
<th>BOX 3</th>
<th>BOX 4</th>
<th>BOX 5</th>
<th>BOX 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.25</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Example:

```
BOX 1  | BOX 2  | BOX 3  | BOX 4  | BOX 5  | BOX 6  
-------|-------|-------|-------|-------|-------|
1.25   | 60    | D     | 05    | ON/DF | V     = 1.2560D05ON/DFV
```  

Filter Model Number Selection

<table>
<thead>
<tr>
<th>BOX 1</th>
<th>BOX 2</th>
<th>BOX 3</th>
<th>BOX 4</th>
<th>BOX 5</th>
<th>BOX 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>Version</td>
<td>Filtration Rating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 = 20”</td>
<td>D = Standard</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40 = 40”</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60 = 60”</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*for others, contact factory

Filter Material

- ON/DF = Optimicron® / Diesel Filtration
- ON/DC = Optimicron® / Diesel Coalescing
- ON/DS = Optimicron® / Diesel Separation

Sealing Material

- V = FPM (FKM, Viton®)
<table>
<thead>
<tr>
<th>Part Number</th>
<th>Model Code</th>
<th>Competitor</th>
<th>Competitor Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact Factory</td>
<td>1.25.20 D 03 ON/DF /-V</td>
<td>Pall</td>
<td>HFU620GF020H13</td>
</tr>
<tr>
<td>Contact Factory</td>
<td>1.25.20 D 05 ON/DF /-V</td>
<td>Pall</td>
<td>HFU620GF060H13</td>
</tr>
<tr>
<td>Contact Factory</td>
<td>1.25.20 D 10 ON/DF /-V</td>
<td>Pall</td>
<td>HFU620GF100H13</td>
</tr>
<tr>
<td>Contact Factory</td>
<td>1.25.40 D 03 ON/DF /-V</td>
<td>Pall</td>
<td>HFU640GF020H13</td>
</tr>
<tr>
<td>3829783</td>
<td>1.25.40 D 05 ON/DF /-V</td>
<td>Pall</td>
<td>HFU640GF060H13</td>
</tr>
<tr>
<td>3877700</td>
<td>1.25.40 D 10 ON/DF /-V</td>
<td>Pall</td>
<td>HFU640GF100H13</td>
</tr>
<tr>
<td>3882380</td>
<td>1.25.40 D 20 ON/DF /-V</td>
<td>Pall</td>
<td>HFU640GF200H13</td>
</tr>
<tr>
<td>3828184</td>
<td>1.25.60 D 05 ON/DF /-V</td>
<td>Pall</td>
<td>HFU660GF060H13</td>
</tr>
<tr>
<td>3877699</td>
<td>1.25.60 D 19 ON/DF /-V</td>
<td>Pall</td>
<td>HFU660GF100H13</td>
</tr>
<tr>
<td>3952283</td>
<td>1.25.60 D 20 ON/DF /-V</td>
<td>Pall</td>
<td>HFU660GF200H13</td>
</tr>
<tr>
<td>3875491</td>
<td>1.32.20 D Z ON/DC /-V</td>
<td>Pall</td>
<td>LCS2H1AH</td>
</tr>
<tr>
<td>3875488</td>
<td>1.32.40 D Z ON/DC /-V</td>
<td>Pall</td>
<td>LCS4H1AH</td>
</tr>
<tr>
<td>3875110</td>
<td>1.33.20 D Z ON/DS /-V</td>
<td>Pall</td>
<td>LSS2F2H</td>
</tr>
<tr>
<td>3872179</td>
<td>15.01.29 D 05 ON/DF /-V</td>
<td>Velcon</td>
<td>DFO-629PLF6</td>
</tr>
<tr>
<td>3907748</td>
<td>15.03.44 D Z ON/DC /-V</td>
<td>Velcon</td>
<td>I-6444 TB</td>
</tr>
<tr>
<td>3907750</td>
<td>15.04.29 D Z ON/DS /-V</td>
<td>Velcon</td>
<td>SO-629PLF3</td>
</tr>
<tr>
<td>3866983</td>
<td>4.15.28 D 05 ON/DF /-V</td>
<td>Parker</td>
<td>HFS-28605-S</td>
</tr>
<tr>
<td>3907751</td>
<td>4.17.43 D Z ON/DC /-V</td>
<td>Parker</td>
<td>HCP-43601-TB</td>
</tr>
<tr>
<td>3907752</td>
<td>4.18.33 D Z ON/DS /-V</td>
<td>Parker</td>
<td>HSP-33605-S</td>
</tr>
<tr>
<td>3907754</td>
<td>45.01.33 D Z ON/DC /-V</td>
<td>Faudi</td>
<td>A.4-842</td>
</tr>
<tr>
<td>3907753</td>
<td>45.02.40 D Z ON/DS /-V</td>
<td>Faudi</td>
<td>60.644-1012</td>
</tr>
</tbody>
</table>
Glossary

FAME
Fatty Acid Methyl Ester (FAME) is commonly known as biodiesel. It is generated from vegetable oil (e.g. soybean oils) or animal fat, which have been transesterfied with methanol. The transesterification is the process of exchanging the organic group of an ester with the organic group of alcohol.

Density (EN ISO 3675, EN ISO 12185)
Biodiesel generally has a higher density than mineral diesel (EN 590 820-845 kg/m³ at 15°C). Density increases with a decrease in chain length and with unsaturation. This can impact on fuel consumption as fuel introduced into the combustion chamber is determined volumetrically.

Viscosity (EN ISO 3104, ISO 3105, D445)
Viscosities of neat vegetable oils are many times higher which leads to serious problems in unmodified engines. The increase in viscosity results in poor atomization and incomplete combustion which leads to coking of injector tips. This results in engine power loss. Biodiesel still has higher viscosity than mineral diesel (3.50-5.00 mm²/s at 40°C vs 2.00-4.50 mm²/s). Viscosity decreases with unsaturation but increases markedly with contamination by mono, di or triglycerides.

Flash Point (ISO 3679, IP 523, IP 524, D93)
Pure rapeseed methyl ester has a flash point value of up to 170°C. This method is therefore looking at residual components within the fuel that are combustible, especially methanol which is a particular hazard due to its invisible flame.

Sulfur Content (En ISO 20846, EN ISO 20884, D5453)
Sulfur emissions are harmful to human health and high sulfur fuels cause greater engine wear and in particular shorten the life of the catalyst. Biodiesel derived from pure Rapeseed oil will contain virtually no Sulfur, however FAME derived from animal sources may contain significant quantities.

Carbon Residue (EN ISO 10370)
The Carbon Residue is the material left after evaporation and pyrolysis of a sample fuel. This is a measure of the tendency of a fuel to produce deposits on injector tips and the combustion chamber. For FAME samples it is an indication of the amount of glycerides, free fatty acids, soaps and catalyst residues remaining within the sample.

Cetane Number (EN ISO 5164, D613)
This serves as a measure of ignition quality. This is the most pronounced change from vegetable oil to the transesterified product. Fuels with low cetane numbers show an increase in emissions due to incomplete combustion. Palm Oil and Tallow derived biodiesels have the best cetane numbers.

Sulfated Ash (ISO 3987, D874)
Ash describes the amount of inorganic contaminants, such as catalyst residues, remaining within the fuel. Ash is related to engine deposits on combustion.

Water Content (EN ISO 12937)
As FAME is hygroscopic it can pick up water during storage and as such there can be problems meeting the specification. At around 1500 ppm the solubility limit is reached and the water bottoms out. Free water promotes biological growth and the reverse reaction turning biodiesel into free fatty acids.

Total Contamination (En 12662, ASTM 2709)
Because production contaminants like residues and soaps can still be present in the purification stage of making biodiesel, the use of Schroeder Fuel Filtration final polishing makes achieving total contamination to EN12662/ASTM D2709 the best way to ensure the total removal of production residues, which means clean fuel and peace of mind.

Copper Strip Corrosion (EN ISO 2160, D130)
This is defined as the likelihood to cause corrosion to copper, zinc and bronze parts of an engine. A polished metallic strip is heated at 50°C for 3 hours, washed and compared to standards. Corrosion is likely to be caused by free acids or sulfur compounds. However FAME gives consistently good results in this area and is unlikely to fail due to the low sulfur content.

Oxidation Stability
This property relates to the overall storage stability of the fuel. The higher the degree of unsaturation (double bonds) within the FAME molecules gives a decrease in oxidative stability, which means that the longer it is stored, the greater the reduction in quality will be. Tests have shown that Eco2Pure can extend the product life of biodiesel via the removal of moisture, mono, di and triglycerides.

Acid Value (EN 14104, D664)
Acid value is a measure of mineral acids and free fatty acids contained in a fuel sample. It is expressed in mg KOH required to neutralize 1g of FAME. High fuel acidity is linked with corrosion and engine deposits.

Iodine Value (EN 14111)
Iodine number is a measure of total unsaturation (double bonds) within the FAME product. It is expressed as the grams iodine required to react with 100g of FAME sample. High iodine value is related to polymerization of fuels, leading to injector fouling. It is also linked to poor storage stability.

Ester Content (EN 14103)
This is measured using gas chromatography and is restricted to esters falling within the C14-C24 range. It is ultimately a test for reaction conversion. Linolenic and polyunsaturated esters are controlled as they have been shown to display a disproportionately strong effect on oxidative stability.
Methanol Content (EN 14110)
Methanol can be removed from FAME by washing or distillation. High methanol contents pose safety risks due to the very low flash point of methanol.

Glycerides (EN 14105, EN 14106, D6584)
There is a limit on the mono, di, and triglycerides of no more than 0.80%, 0.20% and 0.20% respectively. Total glycerol is the sum of the bound and free glycerol and must not exceed 0.25%. Failing to meet the spec implies low conversion to ester and deposit formation on injectors and valves.

Group I Metals
Sodium and Potassium are limited to a combined 5 ppm. These arise from the addition of catalyst, and result in high ash levels in the engine.

Group II Metals
Calcium and Magnesium are limited to a combined 5 ppm. These may arise from the addition of hard water in the washing process. Calcium and Magnesium soaps have been related to injector pump sticking.

Phosphorous Content (EN14107, D4951)
The phosphorous limit is approx. 10 ppm and normally arise from phospholipids within the starting material or from addition of phosphoric acid in the production process. High phosphorus fuels are suspected of poisoning catalysts and increasing emissions.

CFPP (EN 116)
Cold Filter Plugging Point was considered to be a suitable indicator of low temperature operability. It defines a temperature at which a fuel is no longer filterable within a specified time limit.

Filter Clogging
Filter clogging can be caused by Asphaltines which are held in suspension in all diesel fuels. Exposure to elevated temperatures causes the Asphaltines to fall out of suspension, agglomerate and clog filters. In addition, bacteria/fungi/mold-water, usually due to condensation, not only contaminated the fuel, it also provides a breeding ground for micro-organisms that feed on the fuel's hydrocarbons. The formation of wax crystals are the result of exposure to low temperatures. Dirt sediment and rust are typical of poor maintenance practices.

ASTM D975 Specifications
The ASTM D975 provides the detailed specifications for Diesel Fuel Oils, this includes: Flashpoint, Distillation temp. 194°F (90°C), Viscosity, Ash %, Copper strip corrosion rating, Cetane number, Cetane index or Armoaticity %, Cloudpoint or cold filter plug point (CFPP), Carbon residue, Lubricity and Conductivity.

Cloudpoint
Diesel fuels have pour points and cloudpoints within their application temperature range, unlike gasoline, which has freezing points well below even the most severe winter conditions. Ships and railroad applications typically do not experience cloudpoints because heated storage can be arranged. On- and off-highway applications must take precautions to tailor low temperature fuel properties for cold weather. Seasonal blending to control cloudpoint is the refiners assurance against field problems.

Contamination Removal
Contamination removal protects fuel pump injectors. The focus of contamination are water (condensation), micro-organisms (found in water feeds and hydrocarbons), Wax (crystals form in low temperatures), asphaltines (form in presence of high temperatures) and dirt/sediment/rust (the results of poor maintenance). Schroeder’s Z-Media® is a highly effective way to remove dirt/sediment/rust in the fuel.

Coalescing Principal
The coalescing principal is removal of water from diesel fuels and it can be a highly effective method. Schroeder developed a fuel and water separation media technology in a multi-phase element construction for high efficiency, single-pass removal of free and emulsified water in Ultra-low Sulfur Diesel (ULSD) and blends.

In general terms, it functions as follows: A synthetic pre-filter pleat pack filters the fuel, first to remove particles and to protect the downstream coalescing media. The coalescing media is a porous or fibrous media that collects small water droplets. Those smaller droplets combine to larger droplets which eventually sink in the lighter oil, driven by gravity, and collect in the base of the filter bowl where the water can be drained.

Micro-Organisms
For bacteria, fungi and mold, diesel fuel is a food source that requires oxygen (Aerobic Bacteria). Water provides oxygen as well for micro-organisms to grow. These micro-organisms exist in plugged filters, but can be removed with quality filtration.

Storage Stability
In storage, diesel fuels are attacked by atmospheric oxygen, which can cause deposits of varnish, and for marine fuels containing residual components, asphaltic material. Copper metal deactivators reduce the catalytic effects of screens and other parts. In the presence of water, bacterial action can cause a build-up of slime in the storage system, leading to filter plugging. In cold-weather areas, there is the risk of static electric charges building up during high-rate dispensing of distillate fuels.

Wax Crystals
Crystals form in cold temperatures. Pourpoint is the temperature where paraffin crystals start to form. Crystals will plug injector nozzles. Treat fuel if operating within -4°F (20°C) of Pourpoint with pourpoint depressant. It is recommended to test for pourpoint from November to March. Schroeder recommends you review cold clear to treat wax crystals.
Relative Humidity-Absolute Water Content

Conversion Table

Relative Humidity - Absolute Water Content (ppm)

Diesel B5

<table>
<thead>
<tr>
<th>Relative Humidity [%]</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
<th>60</th>
<th>65</th>
<th>70</th>
<th>75</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>15</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>11</td>
<td>13</td>
<td>15</td>
<td>17</td>
<td>19</td>
<td>21</td>
<td>24</td>
<td>27</td>
<td>30</td>
<td>34</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>17</td>
<td>19</td>
<td>22</td>
<td>25</td>
<td>29</td>
<td>32</td>
<td>36</td>
<td>40</td>
<td>45</td>
<td>50</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>23</td>
<td>26</td>
<td>30</td>
<td>34</td>
<td>38</td>
<td>43</td>
<td>48</td>
<td>54</td>
<td>60</td>
<td>67</td>
</tr>
<tr>
<td>25</td>
<td>24</td>
<td>28</td>
<td>32</td>
<td>37</td>
<td>42</td>
<td>48</td>
<td>54</td>
<td>60</td>
<td>67</td>
<td>75</td>
<td>84</td>
</tr>
<tr>
<td>30</td>
<td>29</td>
<td>34</td>
<td>39</td>
<td>44</td>
<td>50</td>
<td>57</td>
<td>64</td>
<td>72</td>
<td>81</td>
<td>90</td>
<td>101</td>
</tr>
<tr>
<td>35</td>
<td>34</td>
<td>39</td>
<td>45</td>
<td>52</td>
<td>59</td>
<td>67</td>
<td>75</td>
<td>84</td>
<td>94</td>
<td>105</td>
<td>117</td>
</tr>
<tr>
<td>40</td>
<td>39</td>
<td>45</td>
<td>52</td>
<td>59</td>
<td>67</td>
<td>75</td>
<td>86</td>
<td>96</td>
<td>108</td>
<td>121</td>
<td>134</td>
</tr>
<tr>
<td>45</td>
<td>44</td>
<td>51</td>
<td>58</td>
<td>66</td>
<td>76</td>
<td>86</td>
<td>96</td>
<td>108</td>
<td>121</td>
<td>136</td>
<td>151</td>
</tr>
<tr>
<td>50</td>
<td>49</td>
<td>56</td>
<td>65</td>
<td>74</td>
<td>84</td>
<td>95</td>
<td>107</td>
<td>120</td>
<td>135</td>
<td>151</td>
<td>168</td>
</tr>
<tr>
<td>55</td>
<td>54</td>
<td>62</td>
<td>71</td>
<td>81</td>
<td>92</td>
<td>105</td>
<td>118</td>
<td>133</td>
<td>148</td>
<td>166</td>
<td>184</td>
</tr>
<tr>
<td>60</td>
<td>59</td>
<td>68</td>
<td>78</td>
<td>89</td>
<td>101</td>
<td>114</td>
<td>129</td>
<td>145</td>
<td>162</td>
<td>181</td>
<td>201</td>
</tr>
<tr>
<td>65</td>
<td>64</td>
<td>73</td>
<td>84</td>
<td>96</td>
<td>109</td>
<td>124</td>
<td>139</td>
<td>157</td>
<td>175</td>
<td>196</td>
<td>218</td>
</tr>
<tr>
<td>70</td>
<td>69</td>
<td>79</td>
<td>91</td>
<td>103</td>
<td>117</td>
<td>133</td>
<td>150</td>
<td>169</td>
<td>189</td>
<td>211</td>
<td>235</td>
</tr>
<tr>
<td>75</td>
<td>73</td>
<td>85</td>
<td>97</td>
<td>111</td>
<td>126</td>
<td>143</td>
<td>161</td>
<td>181</td>
<td>202</td>
<td>226</td>
<td>252</td>
</tr>
<tr>
<td>80</td>
<td>78</td>
<td>90</td>
<td>103</td>
<td>118</td>
<td>134</td>
<td>152</td>
<td>172</td>
<td>193</td>
<td>216</td>
<td>241</td>
<td>268</td>
</tr>
<tr>
<td>85</td>
<td>83</td>
<td>96</td>
<td>110</td>
<td>125</td>
<td>143</td>
<td>162</td>
<td>182</td>
<td>205</td>
<td>229</td>
<td>256</td>
<td>285</td>
</tr>
<tr>
<td>90</td>
<td>88</td>
<td>101</td>
<td>116</td>
<td>133</td>
<td>151</td>
<td>171</td>
<td>193</td>
<td>217</td>
<td>243</td>
<td>271</td>
<td>302</td>
</tr>
<tr>
<td>95</td>
<td>93</td>
<td>107</td>
<td>123</td>
<td>140</td>
<td>159</td>
<td>181</td>
<td>204</td>
<td>229</td>
<td>256</td>
<td>286</td>
<td>319</td>
</tr>
<tr>
<td>100</td>
<td>98</td>
<td>113</td>
<td>129</td>
<td>148</td>
<td>168</td>
<td>190</td>
<td>214</td>
<td>241</td>
<td>270</td>
<td>301</td>
<td>335</td>
</tr>
</tbody>
</table>

Determination of the water saturation curve

Water Saturation Curve - Diesel B5

Free Water represents the lower limit, while *Dissolved Water* represents the upper limit. The line at 600 ppm represents 100% saturation.
In recent years, the US Biodiesel Standard ASTMD6751, and the more stringent European standard EN14214, have been used to show the capabilities of biodiesel production equipment, which is impossible to achieve with just a biodiesel reactor alone. So as to pass the 24 sub-tests, which make up EN14214, it is important to see biodiesel as having three main phases of production:

- Pre-filtration
- Reaction
- Purification

Due to the fact the EN14214 is made up of 24 different tests, which cover several key parts of production and rely upon the acquisition of adequate quality feedstocks and good working processes, the production of biodiesel cannot be accounted for by a single piece of equipment. Due to all the variables, that only you as the producer can control, that may influence your production process, Schroeder Fuel Filtration cannot guarantee results that will pass EN14214/ASTM D6751. We can, however, highlight the processes and procedures to which producers should adhere. A simple suite of tests can be conducted at the time of manufacture to give confidence that the produced biodiesel will meet the EN14214/ASTM D6751 specification. The easily obtained results can also be used to troubleshoot the manufacturing process, helping the purification system work to its optimum level and giving you confidence in its output.

ASTM 6751-11a

This Standard Specification for Biodiesel Fuel Blend Stock (B100) for Middle Distillate Fuels ("Diesel") covers the specifications for biodiesel in the U.S. it closely resemble the more international accepted EN14214.

<table>
<thead>
<tr>
<th>Property</th>
<th>ASTM Method</th>
<th>Limits</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium & Magnesium, combined</td>
<td>EN 14538</td>
<td>5 maximum</td>
<td>ppm (µg/g)</td>
</tr>
<tr>
<td>Flash Point (closed cup)</td>
<td>D 93</td>
<td>93 minimum</td>
<td>°C</td>
</tr>
<tr>
<td>Alcohol Control (one to be met)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Methanol Content</td>
<td>EN 14110</td>
<td>0.2 maximum</td>
<td>mass %</td>
</tr>
<tr>
<td>2. Flash Point</td>
<td>D 93</td>
<td>130 minimum</td>
<td>°C</td>
</tr>
<tr>
<td>Water & Sediment</td>
<td>D 2709</td>
<td>0.05 maximum</td>
<td>% vol.</td>
</tr>
<tr>
<td>Kinematic Viscosity, 40°C</td>
<td>D 445</td>
<td>1.9 – 6.0</td>
<td>mm²/sec.</td>
</tr>
<tr>
<td>Sulfated Ash</td>
<td>D 874</td>
<td>0.02 maximum</td>
<td>% mass</td>
</tr>
<tr>
<td>Sulfur</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S 15 Grade</td>
<td>D 5453</td>
<td>0.0015 max. (15)</td>
<td>% mass (ppm)</td>
</tr>
<tr>
<td>S 500 Grade</td>
<td>D 5453</td>
<td>0.05 max. (500)</td>
<td>% mass (ppm)</td>
</tr>
<tr>
<td>Copper Strip Corrosion</td>
<td>D 130</td>
<td>No. 3 maximum</td>
<td></td>
</tr>
<tr>
<td>Cetane</td>
<td>D 613</td>
<td>47 minimum</td>
<td></td>
</tr>
<tr>
<td>Cloud Point</td>
<td>D 2500</td>
<td>report</td>
<td>°C</td>
</tr>
<tr>
<td>Carbon Residue 100% sample</td>
<td>D 4530*</td>
<td>0.05 maximum</td>
<td>% mass</td>
</tr>
<tr>
<td>Acid Number</td>
<td>D 664</td>
<td>0.5 maximum</td>
<td>mg KOH/g</td>
</tr>
<tr>
<td>Free Glycerin</td>
<td>D 6584</td>
<td>0.020 maximum</td>
<td>% mass</td>
</tr>
<tr>
<td>Total Glycerin</td>
<td>D 6584</td>
<td>0.240 maximum</td>
<td>% mass</td>
</tr>
<tr>
<td>Phosphorus Content</td>
<td>D 4951</td>
<td>0.001 maximum</td>
<td>% mass</td>
</tr>
<tr>
<td>Distillation</td>
<td>D 1160</td>
<td>360 maximum</td>
<td>°C</td>
</tr>
<tr>
<td>Sodium/Potassium, combined</td>
<td>EN 14538</td>
<td>5 maximum</td>
<td>ppm (µg/g)</td>
</tr>
<tr>
<td>Oxidation Stability</td>
<td>EN 15751</td>
<td>3 minimum</td>
<td>hours</td>
</tr>
<tr>
<td>Cold Soak Filtration</td>
<td>D7501</td>
<td>360 maximum</td>
<td>seconds</td>
</tr>
<tr>
<td>For use in temperatures below -12°C</td>
<td>D7501</td>
<td>200 maximum</td>
<td>seconds</td>
</tr>
</tbody>
</table>

* The carbon residue shall be run on the 100% sample.
* Combined water and contamination test under ASTM D2709 Reference Glossary for explanation on the specifications
All road fuels are subject to strict quality controls which are vital to maintain standards and provide authorities with the ability to assess safety risks and environmental pollution. For example regular mineral diesel is subject to the EN 590 standard. In 1997 the European Committee for Standardization was given the task to develop a uniform standard for Fatty Acid Methyl Ester (FAME). The result was the EN14214 specifications.

The introduction of this standard in 2004 is valid for all member stated of the European Union. In particular this standard give engine and automobile makers the ability to give warranties to those vehicles which run on Biodiesel. At present a limit of 5% FAME is allowed in the EN590 specification for mineral diesel. This 5% must conform to the EN14214 standard. Diesel Fuel Injection Equipment (FIE) manufacturers stress the importance of EN14214.

EN 14214 - Property

<table>
<thead>
<tr>
<th>Property</th>
<th>Units</th>
<th>Lower Limit</th>
<th>Upper Limit</th>
<th>Test-Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ester content</td>
<td>% (m/m)</td>
<td>96,5</td>
<td>-</td>
<td>EN 14103</td>
</tr>
<tr>
<td>Density at 15°C</td>
<td>kg/m³</td>
<td>860</td>
<td>900</td>
<td>EN ISO 3675/EN ISO 12185</td>
</tr>
<tr>
<td>Viscosity at 40°C</td>
<td>mm²/sec.</td>
<td>3,5</td>
<td>5,0</td>
<td>EN ISO 3104</td>
</tr>
<tr>
<td>Flash point</td>
<td>°C</td>
<td>> 101</td>
<td>-</td>
<td>ISO 3679</td>
</tr>
<tr>
<td>Sulfur content</td>
<td>mg/kg</td>
<td>-</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>Tar remnant (at 10% distillation remnant)</td>
<td>% (m/m)</td>
<td>-</td>
<td>0,3</td>
<td>EN ISO10370</td>
</tr>
<tr>
<td>Cetane number</td>
<td>-</td>
<td>51,0</td>
<td>-</td>
<td>EN ISO 5165</td>
</tr>
<tr>
<td>Sulfated ash content</td>
<td>% (m/m)</td>
<td>-</td>
<td>0,02</td>
<td>ISO 3987</td>
</tr>
<tr>
<td>Water content</td>
<td>mg/kg</td>
<td>-</td>
<td>500</td>
<td>EN ISO 12937</td>
</tr>
<tr>
<td>Total contamination</td>
<td>mg/kg</td>
<td>-</td>
<td>24</td>
<td>EN 12662</td>
</tr>
<tr>
<td>Copper band corrosion (3 hours at 50°C)</td>
<td>rating</td>
<td>Class 1</td>
<td>Class 1</td>
<td>EN ISO 2160</td>
</tr>
<tr>
<td>Cold filter plugging point (CFPP)</td>
<td>°C</td>
<td>-</td>
<td>*</td>
<td>EN 116</td>
</tr>
<tr>
<td>Oxidation stability, 110°</td>
<td>hours</td>
<td>6</td>
<td>-</td>
<td>EN 14112</td>
</tr>
<tr>
<td>Acid value</td>
<td>mg KOH/g</td>
<td>-</td>
<td>0,5</td>
<td>En 14104</td>
</tr>
<tr>
<td>Iodine value</td>
<td>-</td>
<td>-</td>
<td>120</td>
<td>EN 14111</td>
</tr>
<tr>
<td>Linolic Acid Methylester</td>
<td>% (m/m)</td>
<td>-</td>
<td>12</td>
<td>EN 14103</td>
</tr>
<tr>
<td>Polyunsaturated (> = 4 Double bonds) Methylester</td>
<td>% (m/m)</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Methanol content</td>
<td>% (m/m)</td>
<td>-</td>
<td>0,2</td>
<td>EN 14110</td>
</tr>
<tr>
<td>Monoglyceride content</td>
<td>% (m/m)</td>
<td>-</td>
<td>0,8</td>
<td>EN 14105</td>
</tr>
<tr>
<td>Diglyceride content</td>
<td>% (m/m)</td>
<td>-</td>
<td>0,2</td>
<td>EN 14105</td>
</tr>
<tr>
<td>Triglyceride content</td>
<td>% (m/m)</td>
<td>-</td>
<td>0,2</td>
<td>EN 14105</td>
</tr>
<tr>
<td>Free Glycerine</td>
<td>% (m/m)</td>
<td>-</td>
<td>0,02</td>
<td>EN 14105/EN 14106</td>
</tr>
<tr>
<td>Total Glycerine</td>
<td>% (m/m)</td>
<td>-</td>
<td>0,25</td>
<td>EN 14105</td>
</tr>
<tr>
<td>Alkali Metals (Na +K)</td>
<td>mg/kg</td>
<td>-</td>
<td>5</td>
<td>EN 14108/EN 14109</td>
</tr>
<tr>
<td>Phosphorus content</td>
<td>mg/kg</td>
<td>-</td>
<td>10</td>
<td>EN 14107</td>
</tr>
</tbody>
</table>

* requirements: 15.04 - 30.09. max. 0°C
 01.10. - 15.11. max. -10 °C
 16.11. - 28.02. max. -20 °C
 01.03. - 14.04. max. -10 °C
Worldwide Fuel Charter

The Worldwide Fuel Charter provides fuel quality recommendations published by the members of the Worldwide Fuel Charter Committee as a service to worldwide legislators, fuel users and producers.

Five different categories of fuel quality, have been established for unleaded gasoline and diesel fuel. Below are the properties for the most relevant two categories for Diesel fuel.

Category 4:
Markets with advanced requirements for emission control, for example, markets requiring US Tier 2, US Tier 3 (pending), US 2007 / 2010 Heavy Duty On-Highway, US Non-Road Tier 4, California LEV II, EURO 4/IV, EURO 5/V, EURO 6/VI, JP 2009 or equivalent emission standards. Category 4 fuels enable sophisticated NOx and particulate matter after-treatment technologies:

Footnotes: Category 4: Diesel Fuel
(1) Cetane Index is acceptable instead of Cetane Number if a standardized engine to determine the Cetane Number is unavailable and Cetane improver's are not used. When Cetane improver's are used, the estimated Cetane Number must be greater than or equal to the specified value and the Cetane Index must be greater than or equal to the number in parenthesis.
(2) May relax the minimum limit to 800 kg/m³ when ambient temperatures are below -30°C. For environmental purposes, a minimum of 815 kg/m³ can be adopted.
(3) May relax the minimum limit to 1.5 mm²/s when ambient temperatures are below -30°C or to 1.3 mm²/s when ambient temperatures are below -40°C.
(4) The unit mg/kg is often expressed as ppm.
(5) Examples of trace metals include, but are not limited to, Cu, Fe, Mn, Na, P, Pb, Si and Zn. Another undesirable element is Cl. No trace metal should exceed 1 mg/kg. No intentional addition of metal-based additives is allowed.
(6) Compliance with either T90 or T95 is required.
(7) If compliance is demonstrated by meeting CFPP, then it must be no more than 10°C less than cloud point.
(8) Methods 2a and 2b must be used with fuels containing FAME. Method 2c correlation data are based on fuels containing FAME.
(9) Alternative test methods, with appropriate limits for “no biological growth,” can be used.
(10) For FAME, both EN14214 and ASTM D6751, or equivalent standards, should be considered. Where FAME is used, the blend-stock should meet the B100 Guidelines published by the WWFC Committee, and fuel pumps should be labeled accordingly.
(11) Other biofuels include HVO and BTL. Blending level must allow the finished fuel to meet all the required specifications.
(12) At or below detection limit of the test method used.
(13) Limit and test method are under review to assure DPF endurance.
Diesel Fuel

<table>
<thead>
<tr>
<th>Properties</th>
<th>Units</th>
<th>Min.</th>
<th>Limit</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cetane Number</td>
<td>-</td>
<td>55.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cetane Index (1)</td>
<td>-</td>
<td>55.0 (52.0) (1)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Density at 15°C (2)</td>
<td>kg/m³</td>
<td>820 (2)</td>
<td>-</td>
<td>840</td>
</tr>
<tr>
<td>Viscosity at 40°C (3)</td>
<td>mm²/s</td>
<td>2.0 (3)</td>
<td>-</td>
<td>4.0</td>
</tr>
<tr>
<td>Sulphur</td>
<td>mg/kg (4)</td>
<td>-</td>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td>Trace metal (5)</td>
<td>mg.kg</td>
<td>-</td>
<td>-</td>
<td>1 or non-detectable, whichever is lower</td>
</tr>
<tr>
<td>Total aromatics</td>
<td>% m/m</td>
<td>-</td>
<td>-</td>
<td>15</td>
</tr>
<tr>
<td>PAH (di+, tri+)</td>
<td>% m/m</td>
<td>-</td>
<td>-</td>
<td>2.0</td>
</tr>
<tr>
<td>T90 (6)</td>
<td>°C</td>
<td>-</td>
<td>-</td>
<td>320</td>
</tr>
<tr>
<td>T95 (6)</td>
<td>°C</td>
<td>-</td>
<td>-</td>
<td>340</td>
</tr>
<tr>
<td>Final Boiling Point</td>
<td>°C</td>
<td>-</td>
<td>-</td>
<td>350</td>
</tr>
<tr>
<td>Flash point</td>
<td>°C</td>
<td>55</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Carbon residue</td>
<td>% m/m</td>
<td>-</td>
<td>-</td>
<td>0.20</td>
</tr>
<tr>
<td>CFP or LIFT or CP (7)</td>
<td>°C</td>
<td>-</td>
<td>-</td>
<td>Equal to or lower than the lowest expected ambient temp.</td>
</tr>
<tr>
<td>Water</td>
<td>mg/kg</td>
<td>-</td>
<td>-</td>
<td>200</td>
</tr>
<tr>
<td>Oxidation Stability</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Method 1</td>
<td>g/m³</td>
<td>-</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>Method 2a (Rancimat, modified) (8), or</td>
<td>Hours</td>
<td>35</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Method 2b (Delta TAN) (8), or</td>
<td>mg KOH/g</td>
<td>-</td>
<td>-</td>
<td>0.12</td>
</tr>
<tr>
<td>Method 2c (PetroOxy) (8)</td>
<td>Minutes</td>
<td>65</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Foam volume</td>
<td>ml</td>
<td>-</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>Foam vanishing time</td>
<td>sec.</td>
<td>-</td>
<td>-</td>
<td>15</td>
</tr>
<tr>
<td>Biological growth (9)</td>
<td></td>
<td>-</td>
<td>-</td>
<td>No growth</td>
</tr>
<tr>
<td>FAME (10)</td>
<td>% w/v</td>
<td>-</td>
<td>-</td>
<td>5 (10)</td>
</tr>
<tr>
<td>Other biofuels (11)</td>
<td>% w/v</td>
<td>-</td>
<td>-</td>
<td>(11)</td>
</tr>
<tr>
<td>Ethanol/Methanol</td>
<td>% w/v</td>
<td>-</td>
<td>-</td>
<td>Non-detectable (12)</td>
</tr>
<tr>
<td>Total acid number</td>
<td>mh KOH/g</td>
<td>-</td>
<td>-</td>
<td>0.08</td>
</tr>
<tr>
<td>Ferrous corrosion</td>
<td></td>
<td>-</td>
<td>-</td>
<td>Light rusting</td>
</tr>
<tr>
<td>Copper corrosion</td>
<td>Rating</td>
<td>-</td>
<td>-</td>
<td>Class 1</td>
</tr>
<tr>
<td>Ash</td>
<td>% m/m</td>
<td>-</td>
<td>-</td>
<td>0.001 (13)</td>
</tr>
<tr>
<td>Particulate contamination, total</td>
<td></td>
<td>-</td>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td>Particulate contamination, size distribution</td>
<td>Code rating</td>
<td>-</td>
<td>-</td>
<td>18/16/13 per ISO 4406</td>
</tr>
<tr>
<td>Appearance</td>
<td></td>
<td>-</td>
<td>Clear and bright; no free water or particulates</td>
<td>-</td>
</tr>
<tr>
<td>Injector cleanliness (Method 1)</td>
<td>% air flow loss</td>
<td>-</td>
<td>-</td>
<td>85</td>
</tr>
<tr>
<td>Injector cleanliness (Method 2)</td>
<td>% power loss</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Lubricity (HFRR wear scar dia. at 60°C)</td>
<td>Micron</td>
<td>-</td>
<td>-</td>
<td>400</td>
</tr>
</tbody>
</table>
Category 5:
Markets with highly advanced requirements for emission control and fuel efficiency, for example, those markets that require US 2017 light duty fuel economy, US heavy duty fuel economy, California LEV III or equivalent emission control and fuel efficiency standards in addition to Category 4-level emission control standards

Footnotes: Category 5: Diesel Fuel
(1) Cetane Index is acceptable instead of Cetane Number if a standardized engine to determine the Cetane Number is unavailable and Cetane improver's are not used. When Cetane improver's are used, the estimated Cetane Number must be greater than or equal to the specified value and the Cetane Index must be greater than or equal to the number in parenthesis.
(2) May relax the minimum limit to 800 kg/m3 when ambient temperatures are below -30°C. For environmental purposes, a minimum of 815 kg/m3 can be adopted.
(3) May relax the minimum to 1.5 mm/s when ambient temperatures are below -30°C or to 1.3 mm/s when ambient temperatures are below -40°C.
(4) The unit mg/kg is often expressed as ppm.
(5) Examples of trace metals include, but are not limited to, Cu, Fe, Mn, Na, P, Pb, Si and Zn. Another undesirable element is Cl. No trace metal should exceed 1 mg/kg. No intentional addition of metal-based additives is allowed.
(6) Compliance with either T90 or T95 is required.
(7) If compliance is demonstrated by meeting CFPP, then it must be no more than 10°C less than cloud point.
(8) Alternative test methods, with appropriate limits for “no biological growth,” can be used.
(9) Other biofuels include HVO and BTL. Blending level must allow the finished fuel to meet all the required specifications.
(10) At or below detection limit of the test method used.
(11) Limit and test method are under review to assure DPF endurance.
<table>
<thead>
<tr>
<th>Properties</th>
<th>Units</th>
<th>Min.</th>
<th>Limit</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cetane Number</td>
<td></td>
<td>55.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cetane Index (¹)</td>
<td></td>
<td>55.0 (52.0) (¹)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Density at 15°C</td>
<td>kg/m³</td>
<td>820 (²)</td>
<td>-</td>
<td>840</td>
</tr>
<tr>
<td>Viscosity at 40°C</td>
<td>mm²/s</td>
<td>2.0 (³)</td>
<td>-</td>
<td>4.0</td>
</tr>
<tr>
<td>Sulphur</td>
<td>mg/kg</td>
<td>-</td>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td>Trace metal (⁴)</td>
<td>mg/kg</td>
<td>-</td>
<td>-</td>
<td>1 or non-detectable, whichever is lower</td>
</tr>
<tr>
<td>Total aromatics</td>
<td>% m/m</td>
<td>-</td>
<td>-</td>
<td>15</td>
</tr>
<tr>
<td>PAH (di+, tri+)</td>
<td>% m/m</td>
<td>-</td>
<td>-</td>
<td>2.0</td>
</tr>
<tr>
<td>T90 (⁶) °C</td>
<td></td>
<td>-</td>
<td>-</td>
<td>320</td>
</tr>
<tr>
<td>T95 (⁶) °C</td>
<td></td>
<td>-</td>
<td>-</td>
<td>340</td>
</tr>
<tr>
<td>Final Boiling Point</td>
<td>°C</td>
<td>-</td>
<td>-</td>
<td>350</td>
</tr>
<tr>
<td>Flash point</td>
<td>°C</td>
<td>55</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Carbon residue</td>
<td>% m/m</td>
<td>-</td>
<td>-</td>
<td>0.20</td>
</tr>
<tr>
<td>CFP or LIFT or CP</td>
<td>°C</td>
<td>-</td>
<td>-</td>
<td>Equal to or lower than the lowest expected ambient temp. (⁷)</td>
</tr>
<tr>
<td>Water</td>
<td>mg/kg</td>
<td>-</td>
<td>-</td>
<td>200</td>
</tr>
<tr>
<td>Oxidation Stability, Method 1</td>
<td></td>
<td>-</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>Foam volume</td>
<td>ml</td>
<td>-</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>Foam vanishing time</td>
<td>sec.</td>
<td>-</td>
<td>-</td>
<td>15</td>
</tr>
<tr>
<td>Biological growth (⁸)</td>
<td>-</td>
<td>-</td>
<td>No growth</td>
<td>-</td>
</tr>
<tr>
<td>FAME</td>
<td></td>
<td>Non-detectable</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Other biofuels (⁹)</td>
<td></td>
<td>-</td>
<td>-</td>
<td>Non-detectable (¹⁰)</td>
</tr>
<tr>
<td>Ethanol/Methanol</td>
<td>% v/v</td>
<td>-</td>
<td>Non-detectable (¹⁰)</td>
<td>-</td>
</tr>
<tr>
<td>Total acid number</td>
<td>mh KOH/g</td>
<td>-</td>
<td>-</td>
<td>0.08</td>
</tr>
<tr>
<td>Ferrous corrosion</td>
<td></td>
<td>-</td>
<td>-</td>
<td>Light rusting</td>
</tr>
<tr>
<td>Copper corrosion</td>
<td>rating</td>
<td>-</td>
<td>-</td>
<td>Class 1</td>
</tr>
<tr>
<td>Ash</td>
<td>% m/m</td>
<td>-</td>
<td>-</td>
<td>0.001 (¹¹)</td>
</tr>
<tr>
<td>Particulate contamination, total</td>
<td>See test method</td>
<td>-</td>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td>Particulate contamination, size distribution</td>
<td>Code rating</td>
<td>-</td>
<td>-</td>
<td>18/16/13 per ISO 4406</td>
</tr>
<tr>
<td>Appearance</td>
<td></td>
<td>-</td>
<td>Clear and bright; no free water or particulates</td>
<td>-</td>
</tr>
<tr>
<td>Injector cleanliness (Method 1)</td>
<td>% air flow loss</td>
<td>-</td>
<td>-</td>
<td>85</td>
</tr>
<tr>
<td>Injector cleanliness (Method 2)</td>
<td>% power loss</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Lubricity (HFRR wear scar dia. at 60°C)</td>
<td>Micron</td>
<td>-</td>
<td>-</td>
<td>400</td>
</tr>
</tbody>
</table>
Schroeder Technical Cleanliness Testing & Research Capabilities

Advanced Fluid Conditioning Solutions® Using the Fluid Care Center

As both customer requirements and government regulations continue to drive more efficient filtration, developing new products requires a state-of-the-art testing laboratory. Schroeder has leveraged 65 years of filtration knowledge and brought well known standard tests and custom engineered testing capabilities in a single location to form what we are now proud to call the Fluid Care Center or FCC.

The custom engineered equipment and tests are developed to reconstruct our customers’ operating environments while measuring the implications of choosing different fluid conditioning solutions. This newly available data allows designers to optimize tank design as well as reduce cavitation, size, and the cost of their hydraulic systems. The FCC will allow Schroeder to deliver innovative, high quality solutions to our customers and help them to deliver better machines at lower cost by testing performance rigorously, quickly and efficiently.

Standard Housing Testing

Schroeder tests the performance of its housings to the recognized, but more stringent, NFPA standards for pressure performance, giving our customers peace of mind. Static burst pressure and cyclic rated fatigue pressure (RFP) testing per NFPA/T2.6.1 conservatively determines rated pressures for filter housings.

Schroeder publishes pressure drop vs. flow testing as specified in ISO 3968. Lower pressure drop reduces power requirements, which means energy savings and reduced fuel costs. Schroeder also uses the same equipment to verify cracking and full flow pressure settings of filter bypass valves and indicators.

Standard Element Testing

Schroeder tests to industry standards for element performance so our customers can compare our element to our competition. The most common and important test for filters is the multi-pass testing (MPT) per ISO 16889. This test provides critical performance data for filter elements: filter efficiency(ß), beta stability, and dirt holding capacity(DHC). In addition to testing the performance of elements, Schroeder also tests filter integrity. Filter element collapse/burst testing per ISO 2941 tests the strength of the element construction itself, including the media, support layers, tube, and end caps and provides assurance that an element will hold up in high differential pressure. Schroeder uses a pull tester to check the bond strength of the epoxy/end cap adhesion. Additionally, SI has a bubble point tester which provides a non-destructive filter element integrity test.

Fuel Coalescing Filter & Element Testing

For fuel coalescing filters and elements Schroeder tests according to three industry standards in order to develop filter and element technology and for benchmarking against competitor products. The three standards are as follows:

- SAE J1488 is a fuel/water separation test with continuous water injection of .25% of the fuel flow rate. The test is performed with the water injected upstream (suction side) of the pump resulting in emulsified or finely dispersed water droplets.
- SAE J11839 is a fuel/water separation test with continuous water injection of .25% of the fuel flow rate. The test is performed with the water injected downstream (pressure side) of the pump resulting in larger water droplets.
- ISO 16332 is a fuel/water separation test with continuous water injection of .15% of the fuel flow rate. The test is performed with the water injected either downstream (pressure side) or upstream (suction side) of the pump resulting in emulsified/finely dispersed or larger water droplets, respectively.

<table>
<thead>
<tr>
<th>Outputs</th>
<th>Standard</th>
<th>Application Specific</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-Pass Test Stand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filter Efficiencies (ß), Dirt holding Capacity (DHC), Beta Stabilities, Collapse/Burst and Pressure Drop</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Hydraulic Load Cycle Test Stand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filter Efficiencies (ß), Beta Stabilities, Dirt Holding Capacity (DHC)</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Air-in-Oil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comparative improvement in deaeration performance</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Static Burst Testing/Proof Pressure Testing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burst pressure rating</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Fatigue/Cycle Pressure Testing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated Fatigue Pressure (RFP)</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Flow Bench</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure drop across a housing, element and assembly as a function of flow, Cracking and full flow pressure setting of a bypass valve</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Multi-Purpose Test Stand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coalescing (continuous injection and draw-down), Custom testing</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>
Reference List
Protecting the diesel engine, Filtration/Separation, May/June 2009 by Christine Stanfel PHD, Ahlstrom Filtration

Standard Specification for Diesel Fuel Oils, ASTM D 975 – 09b

Standard Guide for Microbial Contamination in Fuels and Fuels Systems, ASTM D6469 – 08

Fuel Water Separation, Keith Lilly, Zemin Jiang, presented at Third International Filtration Conference.

Emission Regulations for Non road Engines, EPA, document EPA-420-F-12-054, August 2012
