Return Line Filter with 2" Ports

TF1

KF3

KL3

LF1

MLF1

MTA

Features and Benefits

■ Offered in pipe, SAE straight thread and ISO 228 porting

- Available in 18" element lengths only
- Various Dirt Alarm® options
- Available with NPTF inlet and outlet female test ports
- Available with 2" porting with "K" size element
- Available with housing drain plug

Model No. of filter in photograph is LF118LCZ10P32D.

Flow Rating:	Up to 120 gpm (455 L/min) for 150 SUS (32 cSt) fluids
Max. Operating Pressure:	300 psi (20 bar)
Min. Yield Pressure:	1000 psi (70 bar), per NFPA T2.6.1
Rated Fatigue Pressure:	250 psi (17 bar), per NFPA T2.6.1-2005
Temp. Range:	-20°F to 225°F (-29°C to 107°C)
Bypass Setting:	Cracking: 30 psi (2.1 bar) Full Flow: 60 psi (4.1 bar)
Porting Head: Element Case:	Cast Aluminum Steel
Available Porting:	2" NPTF, 2½-12 SAE Straight
Weight of LF1-18LC:	17.5 lbs. (7.9 kg)
Element Change Clearance:	2.0" (55 mm)

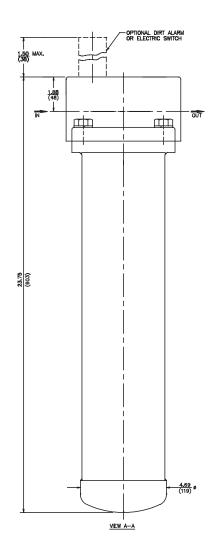
Filter Housing **Specifications**

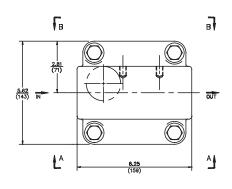
KTK LTK

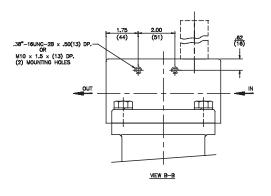
MRT

Type Fluid	Appropriate Schroeder Media
Petroleum Based Fluids	All E media (cellulose) and Z-Media® (synthetic)
High Water Content	All Z-Media (synthetic)
Invert Emulsions	10 and 25 μ Z-Media® (synthetic)
Water Glycols	3, 5, 10 and 25 μ Z-Media [®] (synthetic)
Phosphate Esters	All Z-Media® (synthetic) with H (EPR) seal designation
Skydrol [®]	3, 5, 10 and 25 μ Z-Media® (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior)

Compatibility Accessories Fluid


Mounted


PAF1


MAF1

MF2

Return Line Filter with 2" Ports

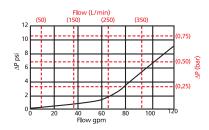
Metric dimensions in ().

Element Performance Information & Dirt Holding Capacity

	Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402		Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171		
Element	ß _x ≥ 75	$\beta_x \ge 100$	$\beta_x \geq 200$	$\beta_{x}(c) \geq 200$	$\beta_{x}(c) \geq 1000$
18LCZ1	<1.0	<1.0	<1.0	<4.0	4.2
18LCZ3	<1.0	<1.0	<2.0	<4.0	4.8
18LCZ5	2.5	3.0	4.0	4.8	6.3
18LCZ10	7.4	8.2	10.0	8.0	10.0
18LCZ25	18.0	20.0	22.5	19.0	24.0
Flement	DHC (am)				

18LCZ1 224 18LCZ3 230 18LCZ5 238 18LCZ10 216 18LCZ15 196	Element	DHC (gm)	
18LCZ5 238 18LCZ10 216	18LCZ1	224	
18LCZ10 216	18LCZ3	230	
	18LCZ5	238	
191 (77)5	18LCZ10	216	
TOLCZZS 100	18LCZ25	186	

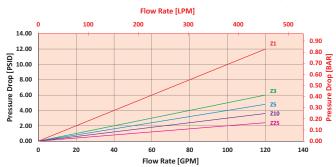
Element Collapse Rating: 150 psid (10 bar)


Flow Direction: Outside In

Element Nominal Dimensions: 4.0" (100 mm) O.D. x 18.5" (470 mm) long

Return Line Filter with 2" Ports

$\triangle \boldsymbol{P}_{\text{housing}}$


LF1-2" $\Delta P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

$\triangle \textbf{P}_{element}$

18LCZ

Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

$$\triangle \mathbf{P}_{\text{filter}} = \triangle \mathbf{P}_{\text{housing}} + (\triangle \mathbf{P}_{\text{element}} * \forall_f)$$

Exercise:

Determine ΔP_{filter} at 70 gpm (265.3 L/min) for LF118LCZ3P32D5 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 70 gpm. In this case, $\Delta P_{\text{housing}}$ is 2 psi (.14 bar) on the graph for the LF1 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 70 gpm. In this case, $\Delta P_{\text{element}}$ is 3.5 psi (.24 bar) according to the graph for the 18LCZ3 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the **Viscosity Factor** (V_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\triangle P_{\text{filter}}$, is calculated by adding $\triangle P_{\text{housing}}$ with the true element pressure differential, ($\triangle P_{\text{element}} * V_f$). The $\triangle P_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 2 \text{ psi } [.14 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 3.5 \text{ psi } [.24 \text{ bar}]$

 $V_f = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$

 $\triangle \mathbf{P}_{\text{filter}} = 2 \text{ psi} + (3.5 \text{ psi} * 1.1) = 5.9 \text{ psi}$

OR

 $\Delta P_{\text{filter}} = .14 \text{ bar} + (.24 \text{ bar} * 1.1) = .40 \text{ bar}$

LF1

Return Line Filter with 2" Ports

Filter Model Number Selection

How to Build a Valid Model Number for a Schroeder LF1:

BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 6 BOX 7
Example: NOTE: Only box 7 may contain more than one option
BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 6 BOX 7
LF1 - 18 - LC3 - P32 - D5 - = LF118LC3P32D5

BOX 1	BOX 2	BOX 3	BOX 4
Filter Series	Length of Element (in)	Element Size and Media	Seal Material
LF1	18	LC3 = LC size 3 µ E media (cellulose) LC10 = LC size 10 µ E media (cellulose)	Omit = Buna N H = EPR
WLF1 (Water)		LCZ1 = LC size 1 µ Excellement® Z-Media™ (synthetic)	V = Viton®
		LCZ3 = LC size 3 μ Excellement Z-Media (synthetic) LCZ5 = LC size 5 μ Excellement Z-Media (synthetic)	H.5 = Skydrol [®] Compatibility
		LCZ10 = LC size 10 µ Excellement Z-Media (synthetic) LCZ25 = LC size 25 µ Excellement Z-Media (synthetic)	

BOX 5	BOX 6	BOX 7
Porting	Dirt Alarm [®] Options	Additional Options
P32 = 2" NPTF	Omit = None	Omit = None
S32 = SAE-32	D = Pointer Visual	L = Two ¼" NPTF inlet and outlet female test ports
B32 = ISO 228 G-2"	D5 = Visual pop-up	G426 = ¾" drain on bottom of housing
	Visual with Thermal D8 = Visual w/ thermal lockout Lockout	G440 = ½" drain on bottom of housing
	MS5 = Electrical w/ 12 in. 18 gauge 4-conductor cable MS5LC = Low current MS5 MS10 = Electrical w/ DIN connector (male end only) MS10LC = Low current MS10	

MS11 = Electrical w/ 12 ft. 4-conductor wire MS12 = Electrical w/ 5 pin Brad Harrison connector (male end only)

MS16 = Electrical w/ weather-packed sealed connector

MS17LC = Electrical w/ 4 pin Brad Harrison male connector

MS5T = MS5 (see above) w/ thermal lockout

MS10T = MS10 (see above) w/ thermal lockout

MS12T = MS12 (see above) w/ thermal lockout

MS16T = MS16 (see above) w/ thermal lockout

Cam operated switch w/ 1/2" conduit

Supplied w/ 5 pin Brad Harrison connector

MS13 = Supplied w/ threaded connector & light

MS13DCT = MS13 (see above), direct current, w/ thermal lockout

MS14DCT = MS14 (see above), direct current, w/ thermal lockout

MS12LC = Low current MS12

MS16LC = Low current MS16

MS5LCT = Low current MS5T

MS10LCT = Low current MS10T

MS12LCT = Low current MS12T

MS16LCT = Low current MS16T

MS17LCT = Low current MS17T

Visual MS13DCLCT = Low current MS13DCT

Lockout MS14DCLCT = Low current MS14DCT

MS = Carri operates : female connection

& light (male end)

NOTES:

Box 2. Replacement element part numbers are a combination of Boxes 2, 3, and 4. Example: 18LCZ3V

Box 4. For options H, V, and H.5, all aluminum parts are anodized. H.5 seal designation includes the following: EPR seals, stainless steel wire mesh on elements, and light oil coating on housing exterior.

Viton® is a registered trademark of DuPont Dow Elastomers. Skydrol® is a registered trademark of Solutia Inc.

Box 5. B porting option supplied with metric mounting holes.

trademark of Solutia I

Box 5. B porting option

Electrical

Electrical

Thermal

Lockout

Electrical

Visual

with