
High-Pressure Servo Sandwich Filter NOF50

Element Change Clearance:

Features and Benefits

■ Localized protection at the servo helps to eliminate downtime and protect critical applications from contamination-related servo valve failures

- Sandwich style 4-bolt design no additional lines to connect
- Designed to protect these commonly installed servo valves: Moog 761 & 62, Vickers SM4-20 and Parker BD15
- High collapse elements, rated to 3000 psi (210 bar)
- Easily applied to new and existing systems
- All steel construction

15 gpm *57 L/min* 5000 psi 345 bar

KC50

KC65

KFH50

Flow Rating:	Up to 15 gpm (57 L/min) for 150 SUS (32 cSt) fluids
Max. Operating Pressure:	5000 psi (345 bar)
Min. Yield Pressure:	15,000 psi (1034 bar), per NFPA T2.6.1
Rated Fatigue Pressure:	4000 psi (276 bar) per NFPA T2-6.1 R2-2005
Temp. Range:	-20°F to 225°F (-29°C to 107°C)
Non-Bypass Model:	Standard with high collapse elements
Porting Head: Element Case:	Steel Steel
Weight of NOF50-1SV:	17 lb. (7.7 kg)

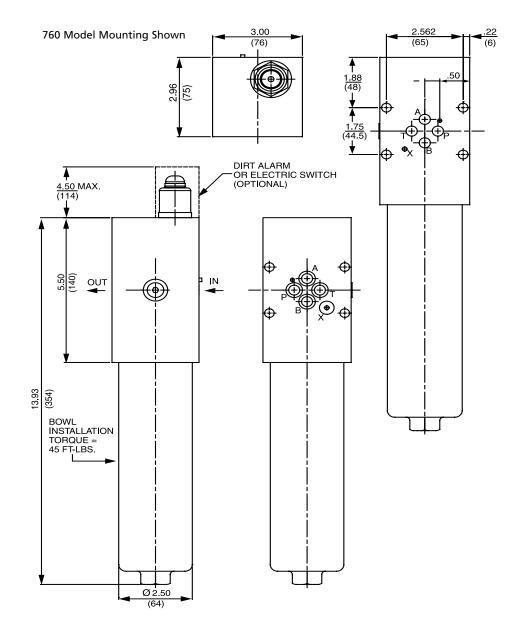
Type Fluid Appropriate Schroeder Media Petroleum Based Fluids All Z-Media® (synthetic)

High Water Content 3, 10 and 25 µ Z-Media® (synthetic) 10 and 25 μ Z-Media® (synthetic) **Invert Emulsions**

4.50" (115 mm)

3, 10 and 25 µ Z-Media® (synthetic) Water Glycols

Fluid Compatibility


Filter Housing **Specifications**

NOF-50-760

SCHROEDER INDUSTRIES 135

High-Pressure Servo Sandwich Filter

Metric dimensions in ().

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

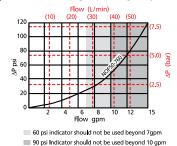
Element Performance Information & Dirt Holding Capacity

	Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402			Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171	
Element	ß _x ≥ 75	$B_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$
SVZX3	<1.0	<1.0	<2.0	4.7	5.8
SVZX10	7.4	8.2	10.0	8.0	9.7

Element	DHC (gm)	
SVZX3	11*	
SVZX10	13*	

Element Collapse Rating: 3000 psid (210 bar) for high collapse (ZX) versions

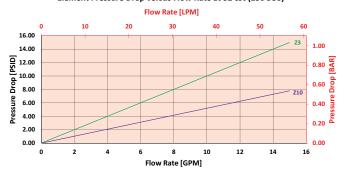
Flow Direction: Outside In


Element Nominal Dimensions: 1.75" (45 mm) O.D. x 8.0" (200 mm) long

High-Pressure Servo Sandwich Filter

NOF50

 $\triangle \mathbf{P}_{\text{housing}}$


NOF50 $\triangle P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:

 $\triangle \textbf{P}_{\text{element}}$

1SVZX

Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

$$\triangle \mathbf{P}_{\text{filter}} = \triangle \mathbf{P}_{\text{housing}} + (\triangle \mathbf{P}_{\text{element}} * \forall_f)$$

Exercise:

Determine $\Delta \mathbf{P}_{\text{filter}}$ at 5 gpm (19 L/min) for NOF501SVZX10760D5 using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 5 gpm. In this case, $\Delta P_{\text{housing}}$ is 15 psi (1 bar) on the graph for the NOF30 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 5 gpm. In this case, $\Delta P_{\text{element}}$ is 3 psi (.21 bar) according to the graph for the SVZX10 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the **Viscosity Factor** (V_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\triangle \mathbf{P}_{\text{filter}}$, is calculated by adding $\triangle \mathbf{P}_{\text{housing}}$ with the true element pressure differential, $(\triangle \mathbf{P}_{\text{element}} * \mathbf{V}_f)$. The $\triangle \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

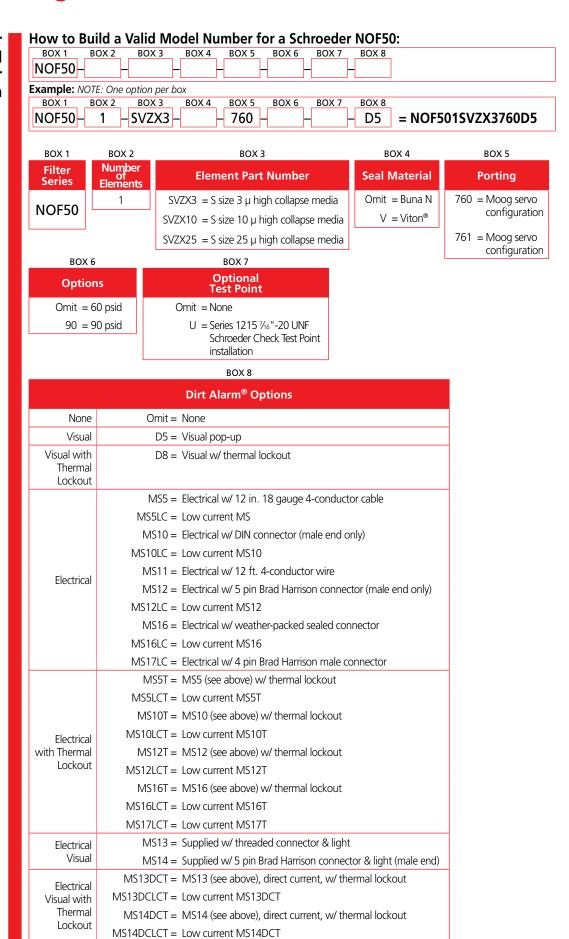
Solution

 $\triangle \mathbf{P}_{\text{housing}} = 15 \text{ psi } [1 \text{ bar}] \mid \triangle \mathbf{P}_{\text{element}} = 3 \text{ psi } [.21 \text{ bar}]$

 $V_f = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$

$$\Delta P_{\text{filter}} = 15 \text{ psi} + (3 \text{ psi} * 1.1) = 18.3 \text{ psi}$$

OR


 $\Delta \mathbf{P}_{\text{filter}} = 1 \text{ bar} + (.21 \text{ bar} * 1.1) = 1.2 \text{ bar}$

Pressure
Drop
Information
Based on
Flow Rate
and Viscosity

High-Pressure Servo Sandwich Filter

Filter Model Number Selection

NOTES:

- Box 3. Replacement element part numbers are identical to contents of Boxes 3 and 4.
- Box 4. Viton® is a registered trademark of DuPont Dow Elastomers.
- Box 6. Please note indicator flow limitations on pressure drop graph, previous page.