Top-Ported Pressure Filter

Features and Benefits

- Top-ported pressure filter
- All steel housing offers unparalleled fatigue rating
- Available with non-bypass option with high collapse element
- Two bowl lengths provide optimal sizing for the application
- Offered in conventional sub-plate, SAE straight thread, and ISO 228 porting

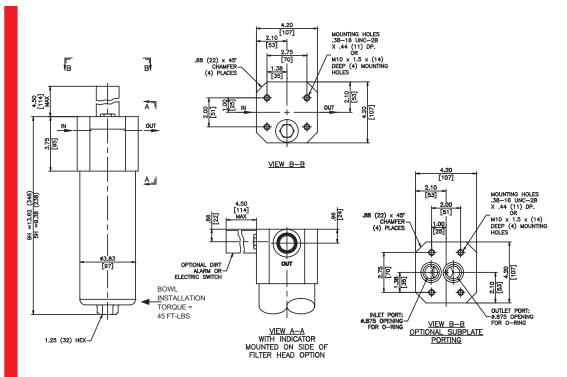
50 gpm 190 L/min 4000 psi 275 bar

PF40

KF30

KC65

KFH50


	Filter Housing Specifications

Up to 50 gpm (190 L/min) for 150 SUS (32 cSt) fluids Flow Rating: Max. Operating Pressure: 4000 psi (275 bar) Min. Yield Pressure: 12,000 psi (828 bar), per NFPA T2.6.1 Rated Fatigue Pressure: 2500 psi (173 bar), per NFPA T2.6.1-R1-2005 Temp. Range: -20°F to 225°F (-29°C to 107°C) **Bypass Setting:** Cracking: 40 psi (2.8 bar) Full Flow: 75 psi (5.2 bar) Porting Head: Steel Element Case: Steel Weight of PF40-5H: 21.8 lbs. (9.9 kg) Weight of PF40-9H: 25.5 lbs. (11.6 kg) **Element Change Clearance:** 3.25" (83 mm)

Type Fluid Appropriate Schroeder Media Petroleum Based Fluids All E Media (cellulose) and Z-Media® (synthetic) High Water Content All Z-Media® (synthetic) **Invert Emulsions** 10 and 25 μ Z-Media® (synthetic) Water Glycols 3, 5, 10 and 25 μ Z-Media® (synthetic) Phosphate Esters All Z-Media® (synthetic) with H (EPR) seal designation

Fluid Compatibility OF-50-760

Top-Ported Pressure Filter

Metric dimensions in (). Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

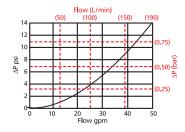
Element Performance Information & Dirt Holding Capacity

		tio Per ISO 4572/N article counter (APC) cal		o per ISO 16889 ated per ISO 11171	
Element	β _x ≥ 75	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \geq 200$	$\beta_x(c) \ge 1000$
5HZ1/9HZ1	<1.0	<1.0	<1.0	<4.0	4.2
5HZ3/9HZ3	<1.0	<1.0	<2.0	<1.0	4.8
5HZ5/9HZ5	2.5	3.0	4.0	4.8	6.3
5HZ10/9HZ10	7.4	8.2	10.0	8.0	10.0
5HZ25/9HZ25	18.0	20.0	22.5	19.0	24.0
5HZX1/9HZX1	<1.0	<1.0	<1.0	<4.0	4.2
5HZX3/9HZX3	<1.0	<1.0	<2.0	<1.0	4.8
5HZX5/9HZX5	2.5	3.0	4.0	4.8	6.3
5HZX10/9HZX10	7.4	8.2	10.0	8.0	10.0
5HZX25/9HZX25	18.0	20.0	22.5	19.0	24.0

Element	DHC (gm)	Element	DHC (gm)	Element	DHC (gm)	Element	DHC (gm)
Licinciic	(9111)	Licinciic	(9111)	Liciliciic	(9111)	Licinciic	(9111)
5HZ1	26	9HZ1	51	5HZX1	14	9HZX1	29
5HZ3	28	9HZ3	42	5HZX3	14	9HZX3	29
5HZ5	39	9HZ5	59	5HZX5	15	9HZX5	31
5HZ10	31	9HZ10	47	5HZX10	15	9HZX10	31
5HZ25	32	9HZ25	48	5HZX25	16	9HZX25	33

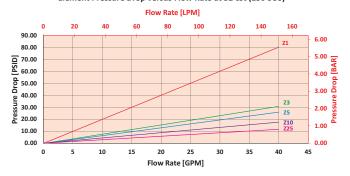
Element Collapse Rating: 150 psid (10 bar) for standard elements

3000 psid (210 bar) for high collapse elements

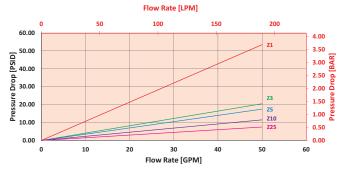

Flow Direction: Outside In

Element Nominal Dimensions: 5H: 2.5" (100 mm) O.D. x 5.36" (136 mm) long

9H: 2.5" (100 mm) O.D. x 9.63" (244 mm) long


 $\triangle \textbf{P}_{\text{housing}}$

PF40 \triangle P_{housing} for fluids with sp gr (specific gravity) = 0.86:



 $\triangle P_{element}$

5HZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

9HZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

$$\triangle P_{\text{filter}} = \triangle P_{\text{housing}} + (\triangle P_{\text{element}} * \mathbf{v}_f)$$

Exercise:

Determine ΔP_{filter} at 20 gpm (75.7 L/min) for PF405HZ3SD5S using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 20 gpm. In this case, $\Delta P_{\text{housing}}$ is 2.5 psi (.17 bar) on the graph for the PF40 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 20 gpm. In this case, $\Delta P_{\text{element}}$ is 15 psi (1 bar) according to the graph for the 5HZ3 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the Viscosity Factor (V) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{\text{housing}}$ with the true element pressure differential, ($\triangle P_{\text{element}} * \mathbf{V}_f$). The $\triangle P_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

 $\triangle \mathbf{P}_{\text{housing}} = 2.5 \text{ psi } [.17 \text{ bar}] \mid \triangle \mathbf{P}_{\text{element}} = 15 \text{ psi } [1 \text{ bar}]$

 \mathbf{v}_f = 160 SUS (34 cSt) / 150 SUS (32 cSt) = 1.1

 $\Delta P_{\text{filter}} = 2.5 \text{ psi} + (15 \text{ psi} * 1.1) = 19 \text{ psi}$

 $\Delta P_{\text{filter}} = .17 \text{ bar} + (1 \text{ bar} * 1.1) = 1.3 \text{ bar}$

Pressure Drop **Information** Based on Flow Rate and Viscosity

If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{\text{element}} = \overline{\text{Flow}} \text{ Rate x } \Delta \mathbf{P}_f$ Plug this variable into the overall pressure drop equation.

Ele.	∆P
5HZX3	1.17
5HZX10	0.50
5HZX25	0.27
9HZX3	0.62
9HZX10	0.26
9HZX25	0.14

Top-Ported Pressure Filter

Filter Model Number Selection

How to Build a Valid Model Number for a Schroeder PF40:

BOX 1	BOX 2	BOX 3	BOX 4	BOX 5	BOX 6	BOX 7	BOX 8	BOX 9	BOX 10
PF40 -									_

BOX 1	BOX 2	BOX 3	BOX 4	BOX 5	BOX 6	BOX 7	BOX 8	BOX 9	BOX 10	
PF40	- 5 -	- HZ3 -		- S -			D5 -	- S	_	= PF405HZ3SD5S

BOX 1	BOX 2	BOX 3
Filter Series	Element Length (in)	Element Part Number
PF40	5	HZ1 = H size 1 μ Excellement® Z-Media® (synthetic)
PFN40	9	HZ3 = H size 3 μ Excellement® Z-Media® (synthetic)
(Non-		HZ5 = H size 5 μ Excellement® Z-Media® (synthetic)
bypassing: requires ZX		HZ10 = H size 10 μ Excellement® Z-Media® (synthetic)
high collapse		HZ25 = H size 25 μ Excellement® Z-Media® (synthetic)
elements)		HZX3 = H size 3 μ Excellement® Z-Media® (high collapse center tube)
		HZX10 = H size 10 μ Excellement® Z-Media® (high collapse center tube)
		HZX25 = H size 25 μ Excellement® Z-Media® (high collapse center tube)

Seal Material Porting Bypass Test Points	BOX 4	BOX 5	BOX 6	BOX /
H = EPR V = Viton® H.5 = Skydrol® V = Viton® Solution B = ISO 228 G-1" X = Blocked Bypass Solution X = Blocked Bypass Solution X = Blocked Bypass Solution Solution X = Blocked Bypass Solution Solution Y = None L = Two 1/4" NPTF inlet & outlet female test ports	Seal Material	Porting	Bypass	Test Points
(Omit box 6 if PFN40 is used) point installation in head (upstream	H = EPR V = Viton® H.5 = Skydrol®		X = Blocked Bypass 50 = 50 PSI bypass	L = Two ¼" NPTF inlet & outlet female test ports

NOTES:

- Box 2. Replacement element part numbers are a combination of Boxes 2, 3 and 4. Example: 5HZ10V
- Box 4. For options H, V, and H.5, all aluminum parts are anodized. H.5 seal designation includes the following: EPR seals, stainless steel wire mesh on elements, and light oil coating on housing exterior. Viton® is a registered trademark of DuPont Dow Elastomers. Skydrol[®] is a registered trademark of Solutia Inc.
- Box 5. B porting option supplied with metric mounting holes.
- Box 6. When X is paired with a standard filter series, a standard bushing and spring plate will be used.
- Box 8. Standard indicator setting for nonbypassing model is 50 psi unless otherwise noted.

BOX 8 BOX 9 Dirt Alarm® Dirt Alarm® Options

	Omit = None
Visual	D5 = Visual pop-up
Visual with Thermal Lockout	D8 = Visual w/ thermal lockout
Electrical	MS5 = Electrical w/ 12 in. 18 gauge 4-conductor cable MS5LC = Low current MS5 MS10 = Electrical w/ DIN connector (male end only) MS10LC = Low current MS10 MS11 = Electrical w/ 12 ft. 4-conductor wire MS12 = Electrical w/ 5 pin Brad Harrison connector (male end only) MS12LC = Low current MS12 MS16 = Electrical w/ weather-packed sealed connector MS16LC = Low current MS16 MS17LC = Electrical w/ 4 pin Brad Harrison male connector
Electrical with Thermal Lockout	MS5T = MS5 (see above) w/ thermal lockout MS5LCT = Low current MS5T MS10T = MS10 (see above) w/ thermal lockout MS10LCT = Low current MS10T MS12T = MS12 (see above) w/ thermal lockout MS12LCT = Low current MS12T MS16T = MS16 (see above) w/ thermal lockout MS16LCT = Low current MS16T MS16LCT = Low current MS16T MS17LCT = Low current MS17T

MS13DC = Supplied w/ threaded connector & light

MS13DCLCT = Low current MS13DCT

MS14DCLCT = Low current MS14DCT

MS14DC = Supplied w/ 5 pin Brad Harrison connector & light (male end)

MS13DCT = MS13 (see above), direct current, w/ thermal lockout

MS14DCT = MS14 (see above), direct current, w/ thermal lockout

Location

Omit = Top mounted S = Side mounted

BOX 10

Bowl Drain Options

Omit = None

DR = Drain $\frac{7}{16}$ "-20

Electrical

Electrical

Thermal

Lockout

Visual with

Visual