In-Line Filter QF5

 Features and Benefits Element changeout from the top minimizes oil spillage 	300 gpm <u>1135 L/min</u> 500 psi	GH RLT
 Available with optional core assembly to accommodate coreless elements 	35 bar	KF5
 Offered with standard Q, QPML deep-plated and QCLQF coreless elements in 16" and 39" lengths with standard Viton[®] seals 		SRLT
 Offered in pipe, SAE straight thread, and flange porting 		K9
Optional inlet and outlet test pointsWQF5 model for water service also available		2K9
 Various Dirt Alarm[®] options 		3K9
		QF5
		QF5i
539QZ10P32.		3QF5
		QFD2
300 gpm (1135 L/min) for 150 SUS (32 cSt) fluids si (35 bar)	Filter Housing	QFD5
osi (172 bar), per NFPA T2.6.1-R1-2005 ct Factory	Specifications	QF15
		Y'''

Model No. of filter in photograph is QF5

Flow Rating:	Up to 300 gpm (1135 L/min) for 150 SUS (32 cSt) fluids	Filter	0505
Max. Operating Pressure:	500 psi (35 bar)	Housing	QFD5
Min. Yield Pressure:	2500 psi (172 bar), per NFPA T2.6.1-R1-2005	Specifications	
Rated Fatigue Pressure:	Contact Factory		QF15
Temp. Range:	-20°F to 225°F (-29°C to 107°C)		
Bypass Setting:	Cracking: 30 psi (2.1 bar) Full Flow: 55 psi (3.8 bar)		QLF15
Porting Base:	Cast Aluminum		
Element Case:	Steel		SSQLF15
Cap:	Ductile Iron		
Weight of QF516: Weight of QF539:			
Element Change Clearance:	16Q 12.0" (205 mm) 39Q 33.8" (859 mm)		

Type Fluid	Appropriate Schroeder Media	Fluid
Petroleum Based Fluids	All Z-Media® and ASP® media (synthetic)	Compatibility
High Water Content	All Z-Media® and ASP® media (synthetic)	
Invert Emulsions	10 and 25 μ Z-Media® and 10 μ ASP® media (synthetic)	
Water Glycols	3, 5, 10 and 25 μ Z-Media® and all ASP® Media (synthetic)	
Phosphate Esters	All Z-Media® (synthetic) with H (EPR) seal designation and all ASP® media (synthetic)	
Skydrol®	3, 5, 10 and 25 μ Z-Media [®] (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior) and all ASP [®] media (synthetic)	

In-Line Filter

Metric dimensions in ().

Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

Element Performance Information & Dirt Holding Capacity

	Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402				Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171	
Element		β _X ≥ 75	β _X ≥ 100	$\beta_X \ge 200$	β _χ (c) ≥ 200	β _X (c) ≥ 1000
	Z1/CLQFZ1/PMLZ1	<1.0	<1.0	<1.0	<4.0	4.2
	Z3/CLQFZ3/PMLZ3	<1.0	<1.0	<2.0	<4.0	4.8
16Q	Z5/CLQFZ5/PMLZ5	2.5	3.0	4.0	4.8	6.3
	Z10/CLQFZ10/PMLZ10	7.4	8.2	10.0	8.0	10.0
	Z25/CLQFZ25/PMLZ25	18.0	20.0	22.5	19.0	24.0
	Z1/CLQFZ1/PMLZ1	<1.0	<1.0	<1.0	<4.0	4.2
200	Z3/CLQFZ3/PMLZ3	<1.0	<1.0	<2.0	<4.0	4.8
39Q	Z5/CLQFZ5/PMLZ5	2.5	3.0	4.0	4.8	6.3
	Z10/CLQFZ10/PMLZ10	7.4	8.2	10.0	8.0	10.0

Ele	ment	DHC (gm)	Elemen	t DHC (gm)	Element	DHC (gm)
	Z1	276	CLQFZ1	307	PMLZ1	307
	Z3	283	CLQFZ3	315	PMLZ3	315
16Q	Z5	351	CLQFZ5	364	PMLZ5	364
	Z10	280	CLQFZ10) 306	PMLZ10	330
	Z25	254	CLQFZ25	5 278	PMLZ25	299
	Z1	974	CLQFZ1	1259	PMLZ1	1485
	Z3	1001	CLQFZ3	1293	PMLZ3	1525
39Q	Z5	954	CLQFZ5	1302	PMLZ5	1235
	Z10	940	CLQFZ10) 1214	PMLZ10	1432
	Z25	853	CLQFZ25	5 1102	PMLZ25	1299
	Element Collapse R	nd QPML: 15	0 psid (10 bar), QC	LQF: 100 psid (7 bar)		
	Flow Dire	ection: Out	side In			
	Element Nominal Dimer		-		x 16.85" (430 mm) long x 18.21" (463 mm) long	

6.0" (150 mm) O.D. x 16.00" (405 mm) long

6.0" (150 mm) O.D. x 40.01" (1016 mm) long

6.0" (150 mm) O.D. x 37.80" (960 mm) long

16QPML:

39QCLQF:

39QPML:

178 SCHROEDER INDUSTRIES

Exercise:

Determine $\Delta \mathbf{P}_{\text{filter}}$ at 100 gpm (379 L/min) for QF539QZ3P32UDPG using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 100 gpm. In this case, $\Delta P_{\text{housing}}$ is 2 psi (.14 bar) on the graph for the QF5 housing.

Use the element pressure curve to determine $\Delta P_{element}$ at 100 gpm. In this case, $\Delta P_{element}$ is 1 psi (.07 bar) according to the graph for the 39QZ3 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the Viscosity Factor (V_f) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{\text{housing}}$ with the true element pressure differential, $(\Delta P_{element} * V_f)$. The $\Delta P_{element}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 2 \text{ psi } [.14 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 1 \text{ psi } [.07 \text{ bar}]$

Vf = 160 SUS (34 cSt) / 150 SUS (32 cSt) = 1.1 $\Delta \mathbf{P}_{filter} = 2 \text{ psi} + (1 \text{ psi} * 1.1) = 3.1 \text{ psi}$ OR

 $\Delta \mathbf{P}_{filter} = .14 \text{ bar} + (.07 \text{ bar} * 1.1) = .22 \text{ bar}$

In-Line Filter **OF**

				(QLF	15
				SS	QLF	15
Note: If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{element} = Flow Rate x \Delta \mathbf{P}_f$ Plug this variable into the overall pressure drop equation.						
	Ele.	$\Delta \mathbf{P}$	Ele.	$\Delta \mathbf{P}$	Ele.	$\Delta \mathbf{P}$
	16QAS3V	0.04	16QPMLZ1	0.08	39QZ1	0.03

К9

	Ele.	$\Delta \mathbf{P}$	Ele.	$\Delta \mathbf{P}$	Ele.	$\Delta \mathbf{P}$
	16QAS3V	0.04	16QPMLZ1	0.08	39QZ1	0.03
	16QAS5V	0.04	16QPMLZ3	0.05	39QZ3	0.01
	16QAS10V	0.03	16QPMLZ5	0.05	39QZ5	0.01
	16QPML- AS3V	0.05	16QPMLZ10	0.04	39QZ10	0.01
	16QPML- AS5V	0.05	16QPMLZ25	0.02	39QZ25	0.01
	16QPML- AS10V	0.04	39QAS3V	0.01	39QPMLZ1	0.03
	16QZ1	0.09	39QAS5V	0.01	39QPMLZ3	0.02
	16QZ3	0.04	39QAS10V	0.01	39QPMLZ5	0.02
	16QZ5	0.04	39QPMLAS- 3V	0.02	39QPMLZ10	0.01
	16QZ10	0.03	39QPMLAS- 5V	0.02	39QPMLZ25	0.01
	16QZ25	0.01	39QPMLAS- 10V	0.01		

In-Line Filter

