

Features and Benefits

- Low pressure tank-mounted filter
- Designed for high return line flows
- Tank-mounted unit saves space, reduces plumbing
- Cap handles provide for easy element changeout
- Offered with standard Q, QW, and QPML deep-pleated elements in 16" and 39" lengths with Viton® seals as the standard seal option

450 gpm <u>1700 L/min</u> 100 psi 7 bar

TF1

KF3

KL3

LF1

MLF1

CDTD

IVITA

MTB

KFT

RT

RTI

QT

IXII

LTK

MRT

Model No. of filter in photograph is QT39QZ10P48D5C.

	_
Flow Rating:	Up to 450 gpm (1700 L/min) for 150 SUS (32 cSt) fluids
Max. Operating Pressure:	100 psi (7 bar)
Min. Yield Pressure:	300 psi (21 bar), per NFPA T2.6.1
Rated Fatigue Pressure:	100 psi (7 bar), per NFPA T2.6.1-R1-2005
Temp. Range:	-20°F to 225°F (-29°C to 107°C)
Bypass Setting:	Cracking: 30 psi (2.1 bar) Full Flow: 55 psi (3.8 bar)
Porting Head: Element Case:	Steel Steel
Min. Weight of QT-16Q: Min. Weight of QT-39Q:	100.0 lbs. (46 kg) 158.0 lbs. (72 kg)
Element Change Clearance:	16Q 12.0" (305 mm) 39Q 33.8" (859 mm)

Fluid Compatibility

Filter Housing Specifications

Accessories
For TankMounted

РΔГ

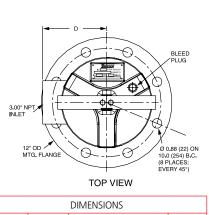
MAF1

MF2

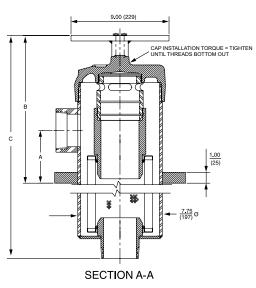
Type Fluid Appropriate Schroeder Media

Petroleum Based Fluids All E media (cellulose), Z-Media® and ASP® media (synthetic)

High Water Content All Z-Media® and ASP® media (synthetic)


Invert Emulsions 10 and 25 μ Z-Media® and 10 μ ASP® media (synthetic)

Water Glycols 3, 5, 10 and 25 µ Z-Media® and all ASP® media (synthetic)


Phosphate Esters All Z-Media® (synthetic) with H (EPR) seal designation and all

ASP® media (synthetic)

			ERY 45°)				
		TOP VIEW					
	DIMENSIONS						
Α	В	С	D				
4.85	14.62	16Q: 30.43 (773)	5.88				
(123)	(371)	39Q: 52.25 (1327)	(149)				
5.75	16.12	16Q: 30.43 (773)	6.13				
(146)	(409)	39Q: 52.25 (1327)	(156)				

Metric dimensions in ().

3"

4"

Element Performance Information & Dirt Holding Capacity

		 	er ISO 4572/NF counter (APC) calil		o per ISO 16889 ated per ISO 11171	
Eleme	ent	ß _x ≥ 75	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$
	Z1/PMLZ1	<1.0	<1.0	<1.0	<4.0	4.2
	Z3/PMLZ3	<1.0	<1.0	<2.0	<4.0	4.8
16Q	Z5/PMLZ5	2.5	3.0	4.0	4.8	6.3
	Z10/PMLZ10	7.4	8.2	10.0	8.0	10.0
	Z25/PMLZ25	18.0	20.0	22.5	19.0	24.0
	Z1/PMLZ1	<1.0	<1.0	<1.0	<4.0	4.2
39Q	Z3/PMLZ3	<1.0	<1.0	<2.0	<4.0	4.8
	Z5/PMLZ5	2.5	3.0	4.0	4.8	6.3
	Z10/PMLZ10	7.4	8.2	10.0	8.0	10.0
	Z25/PMLZ25	18.0	20.0	22.5	19.0	24.0

Eleme	ent	DHC (gm)	Element	DHC (gm)
	Z1	276	PMLZ1	307
	Z3	283	PMLZ3	315
16Q	Z5	351	PMLZ5	364
	Z10	280	PMLZ10	330
	Z25	254	PMLZ25	299
	Z1	974	PMLZ1	1485
	Z3	1001	PMLZ3	1525
39Q	Z5	954	PMLZ5	1235
	Z10	940	PMLZ10	1432
	Z25	853	PMLZ25	1299

Element Collapse Rating: Q and QPML: 150 psid (10 bar)

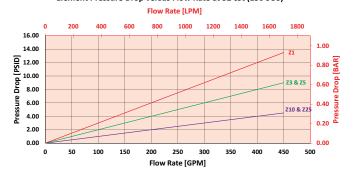
Flow Direction: Outside In

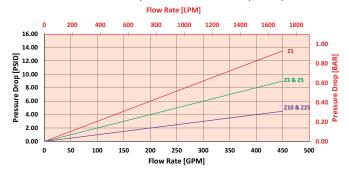
Element Nominal Dimensions: 16Q:


16Q: 6.0" (150 mm) O.D. x 16.85" (430 mm) long 16QPML: 6.0" (150 mm) O.D. x 16.00" (405 mm) long 39Q: 6.0" (150 mm) O.D. x 38.70" (985 mm) long 39QPML: 6.0" (150 mm) O.D. x 37.80" (960 mm) long

^{*}Outlet port is always 3".

 $\triangle \mathbf{P}_{\text{housing}}$


QT $\triangle P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:


 $\triangle \boldsymbol{P}_{element}$

39QZ

Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

39QPMLZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

$$\triangle \mathbf{P}_{\text{filter}} = \triangle \mathbf{P}_{\text{housing}} + (\triangle \mathbf{P}_{\text{element}} * \forall_f)$$

Exercise:

Determine $\Delta \mathbf{P}_{\text{filter}}$ at 200 gpm (758 L/min) for QT16QZ3P48D5C using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 200 gpm. In this case, $\Delta P_{\text{housing}}$ is 2 psi (.14 bar) on the graph for the QT housing.

Use the element pressure curve to determine $\Delta \mathbf{P}_{\text{element}}$ at 200 gpm. In this case, $\Delta \mathbf{P}_{\text{element}}$ is 8 psi (.55 bar) according to the graph for the 16QZ3 element.

Because the viscosity in this sample is 160 SUS (34 cSt), we determine the **Viscosity Factor** (V_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\triangle \mathbf{P}_{\text{filter}}$, is calculated by adding $\triangle \mathbf{P}_{\text{housing}}$ with the true element pressure differential, $(\triangle \mathbf{P}_{\text{element}} * \mathbf{v}_f)$. The $\triangle \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution

 $\Delta \mathbf{P}_{\text{housing}} = 2 \text{ psi } [.14 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 8 \text{ psi } [.55 \text{ bar}]$

 $V_f = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$

$$\Delta \mathbf{P}_{\text{filter}} = 2 \text{ psi} + (8 \text{ psi} * 1.1) = 10.8 \text{ psi}$$

OR

 $\Delta \mathbf{P}_{\text{filter}} = .14 \text{ bar} + (.55 \text{ bar} * 1.1) = .75 \text{ bar}$

Pressure
Drop
Information
Based on
Flow Rate
and Viscosity

Note:

If your element is not graphed, use the following equation: $\Delta P_{\text{element}} = \text{Flow Rate x } \Delta P_f$. Plug this variable into the overall pressure drop equation.

ressure drop equation.						
Ele.	∆P	Ele.	∆P			
16QAS3V	0.04	16QPMLZ1	0.08			
16QAS5V	0.04	16QPMLZ3	0.05			
16QAS10V	0.03	16QPMLZ5	0.05			
6QPMLAS3V	0.05	16QPMLZ10	0.04			
6QPMLAS5V	0.05	16QPMLZ25	0.02			
6QPMLAS10V	0.04	39QAS3V	0.01			
16QZ1	0.09	39QAS5V	0.01			
16QZ3	0.04	39QAS10V	0.01			
16QZ5	0.04	39QPMLAS3V	0.02			
16QZ10	0.03	39QPMLAS5V	0.02			
16QZ25	0.01	39QPMLAS10V	0.01			

Filter Model Number Selection

How to Build a Valid Model Number for a Schroeder QT:

BOX 1	BOX 2	BOX 3	BOX 4	BOX 5	BOX 6	BOX 7	BOX 8	BOX 9	BOX 10
QT -								_	_

Example: NOTE: One option per box

BOX 1	BOX 2	BOX 3	BOX 4	BOX 5	BOX 6	BOX 7	BOX 8	BOX 9	BOX 10
QT -	- 16 -	Q -	- Z -	- 3 -		- P48 -			- D5C = QT16QZ3P48D5C

BOX 1	BOX 2	BOX 3	BOX 4	BOX 5	BOX 6
Filter Series	Element Length (in)	Element Style	Media Type	Micron Rating	Housing Seal Material
QT	16 39	Q QCLQF QPML	Z = Excellement® Z-Media® (synthetic) W = W media (water removal) AS = Anti-Static Pleat Media (synthetic)	1 = 1 μ Z-Media [®] 3 = 3 μ AS and Z-Media [®] 5 = 5 μ AS and Z-Media [®] 10 = 10 μ AS and Z-Media [®] 25 = 25 μ Z-Media [®]	Omit = Buna N H = EPR V = Viton®

BOX 7 **BOX 10**

Visual

Electrical

Thermal

Lockout

with

Inlet Porting

P48 = 3" NPTF P64 = 4" NPTF

BOX 8

Bypass Setting

Omit = 30 psi cracking 15 = 15 psi cracking 40 = 40 psi cracking 50 = 50 psi cracking X = Blocked bypass

BOX 9

Outlet Porting

Omit = 3" NPT Male

C = Check valve

D = Diffuser

CD = Check valve and

Dirt Alarm® Options
Omit – None

	Dirt Alarm® Options
	Omit = None
Visual	D5C = Visual pop-up in cap
Visual with Thermal Lockout	D8C = Visual w/ thermal lockout in cap
	MS5C = Electrical w/ 12 in. 18 gauge 4-conductor cable in cap
	MS5LCC = Low current MS5 in cap
	MS10C = Electrical w/ DIN connector (male end only) in cap
	MS10LCC = Low current MS10 in cap
Electrical	MS11C = Electrical w/ 12 ft. 4-conductor wire in cap
Liecuicai	MS12C = Electrical w/5 pin Brad Harrison connector (male end only) in cap
	MS12LCC = Low current MS12 in cap
	MS16C = Electrical w/ weather-packed sealed connector in cap
	MS16LCC = Low current MS16 in cap
	MS17LCC = Electrical w/ 4 pin Brad Harrison male connector in cap
	MS5T = MS5 (see above) w/ thermal lockout in cap
	MS5LCT = Low current MS5T in cap
	MS10TC = MS10 (see above) w/ thermal lockout in cap
Electrical	MS10LCTC = Low current MS10T in cap
with Thermal	MS12TC = MS12 (see above) w/ thermal lockout
Lockout	MS12LCTC = Low current MS12T in cap
	MS16TC = MS16 (see above) w/ thermal lockout in cap
	MS16LCTC = Low current MS16T in cap
	MS17LCTC = Low current MS17T in cap
Element of the	MS13C = Supplied w/ threaded connector & light in cap
Electrical	MC1/C - Supplied w/ Epip Prod Harrison connector & light

MS14C = Supplied w/ 5 pin Brad Harrison connector & light

MS13DCTC = MS13 (see above), direct current, w/ thermal lockout in cap

MS14DCTC = MS14 (see above), direct current, w/ thermal lockout in cap

(male end) in cap

Visual MS13DCLCTC = Low current MS13DCT in cap

MS14DCLCTC = Low current MS14DCT in cap

NOTES:

Box 2. Replacement element part numbers are a combination of Boxes 2, 3, 4 and 5, plus the letter V. Example: 16QZ1V

Box 3. QCLQF element are not available in ASP® media.

Box 4. E media elements are also available for the QT filter housing. Contact factory for more information.

Box 4. For Option W, Box 3 must equal Q.

Box 6. Viton® is a registered trademark of DuPont Dow Elastomers. All elements for this filter are supplied with Viton® seals. Seal designation in Box 6 applies to housing only.