

Model No. of filter in photograph is RLD25DNZ5S24DW.

Features and Benefits

■ Lightweight duplex filter constructed of aluminum

- High chromium content aluminum alloy is water tolerant – anodization is not required for high water-based fluids (HWBF)
- Filter housings are designed to withstand pressure surges as well as high static pressure loads
- Screw-in bowl allows the filter element to be easily removed for replacement or cleaning
- Standard model supplied with drain plugs
- Standard Viton® seal on filter housing
- Filter contains an integrated equalization valve
- Pressure is equalized between filters by raising the change-over lever prior to switching it to the relevant filter side

100 gpm 380 Ľ/min 350 psi 24 bar

MLF1

RLD

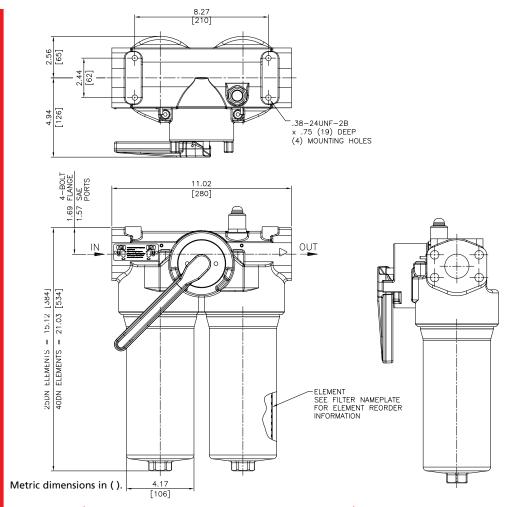
LTK

MRT

Flow Rating:	Up to 100 gpm (380 L/min) for 150 SUS (32 cSt) fluids			
Max. Operating Pressure:	350 psi (24 bar)			
Min. Yield Pressure:	Contact factory			
Rated Fatigue Pressure:	350 psi (24 bar)			
Temp. Range:	-22°F to 250°F (-30°C to 121°C)			
Bypass Setting:	Standard: 102 psi (7 bar) Optional: 43 psi (3.0 bar)			
Porting Head: Element Case:	Aluminum Aluminum			
Weight of RLD-25DN: Weight of RLD-40DN:	26 lbs. (11.8 kg) 29 lbs. (13.0 kg)			
Element Change Clearance:	25DN: 3.5" (89 mm) 40DN: 3.5" (89 mm)			

Fluid Compatibility

Filter Housing **Specifications**


MAF1

Type Fluid Appropriate Schroeder Media

Petroleum Based Fluids All Z-Media® (synthetic) **High Water Content** All Z-Media® (synthetic) **Invert Emulsions** 10 and 25 µ Z-Media® (synthetic) Water Glycols

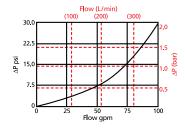
3, 6, 10 and 25 µ Z-Media[®] (synthetic)

Element Performance Information & Dirt Holding Capacity

		io Per ISO 4572/NF rticle counter (APC) calib	Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171		
Element	ß _x ≥ 75	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_{x}(c) \geq 200$	$\beta_x(c) \ge 1000$
25/40DNZ3	<1.0	<1.0	<2.0	<4.0	4.8
25/40DNZ6	2.5	3.0	4.0	4.8 8.0	6.3 10.0
25/40DNZ10	7.4	8.2	10.0		
25/40DNZ25	18.0	20.0	22.5	19.0	24.0

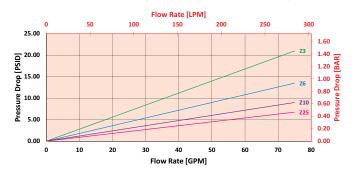
Element	DHC (gm)	Element	DHC (gm)	
25DNZ3	57	40DNZ3	105	
25DNZ6	62	40DNZ6	115	
25DNZ10	52	40DNZ10	104	
25DNZ25	48	40DNZ25	94	

Element Collapse Rating: 290 psid (20 bar)

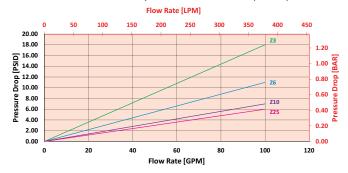

Flow Direction: Outside In

Element Nominal Dimensions: 3.0" (75 mm) O.D. x 14.5" (370 mm) long

RLD


 $\triangle \textbf{P}_{\text{housing}}$

RLD $\triangle \mathbf{P}_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:



 $\triangle \boldsymbol{P}_{element}$

25DNZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

40DNZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

$$\triangle \mathbf{P}_{\text{filter}} = \triangle \mathbf{P}_{\text{housing}} + (\triangle \mathbf{P}_{\text{element}} * \forall_f)$$

Exercise:

Determine ΔP_{filter} at 70 gpm (265.3 L/min) for RLD25DNZ5VF2440VM using 160 SUS (34 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 70 gpm. In this case, $\Delta P_{\text{housing}}$ is 14 psi (.96 bar) on the graph for the RLD housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 70 gpm. In this case, $\Delta P_{\text{element}}$ is 8 psi (.55 bar) according to the graph for the 25DNZ5V element.

Because the viscosity in this sample is 160 SUS (44 cSt), we determine the **Viscosity Factor** (V_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\triangle P_{\text{filter}}$, is calculated by adding $\triangle P_{\text{housing}}$ with the true element pressure differential, ($\triangle P_{\text{element}} * V_f$). The $\triangle P_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 14 \text{ psi } [.96 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 8 \text{ psi } [.55 \text{ bar}]$

 $V_f = 160 \text{ SUS } (34 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.1$

 $\Delta P_{\text{filter}} = 14 \text{ psi} + (8 \text{ psi} * 1.1) = 22.8 \text{ psi}$

<u>OR</u>

 $\Delta P_{\text{filter}} = .96 \text{ bar} + (.55 \text{ bar} * 1.1) = 1.6 \text{ bar}$

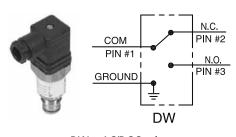
Pressure
Drop
Information
Based on
Flow Rate
and Viscosity

Filter Model Number Selection

How to Build a Valid Model Number for a Schroeder RLD:

	RLD -	BOX 2	BOX 3	BOX 4	BOX 5	BOX 6 BOX	X7
Example: NOTE: One option per box							
	BOX 1	BOX 2	BOX 3	BOX 4	BOX 5	BOX 6 BOX	X 7
	RID	25	DN75	\ \/	F2/I	40 - 1/1	M - RI D25DN75VF2440VM

BOX 1 BOX 2 BOX 3 BOX 4 Length of Element Seal Material **Filter Element Size and Media** Elements Series (cm) 25 DNZ5 = DN size 5 μ synthetic media Omit = Buna N **RLD** 40 $V = Viton^{\otimes}$ DNZ10 = DN size 10 μ synthetic media DNZ25 = DN size 25 μ synthetic media DNM25 = DN size 25 μ M media (reuseable metal) DNM50 = DN size 50μ M media (reuseable metal) DNM100 = DN size 100 μ M media (reuseable metal) DNM200 = DN size 200 μ M media (reuseable metal)


BOX 5
BOX 6
BOX 7

Porting
Bypass Setting

F24 = 1½" SAE 4-bolt flange Code 61
S24 = SAE-24 (1½")

Omit = 102 psi cracking
40 = 43 psi cracking
Visual
VM = Visual pop-up w/manual reset
Electrical
DW = AC/DC 3-wire (NO or NC)

DW = AC/DC 3-wire (NO or NC)

NOTES:

Box 2. Replacement element part numbers are a combination of Boxes 2, 3 and 4. Example: 40DNZ10

Box 4. Filter housings are supplied with standard Viton seals. Seal designation in Box 4 applies to element only. Viton® is a registered trademark of DuPont Dow Elastomers.