Return Line Filter

30 gpm

300 psi 20 bar

Filter Housing **Specifications**

120 L/min

TF1

KF3

KL3

MLF1

MTA

LTK

MRT

Fluid Compatibility

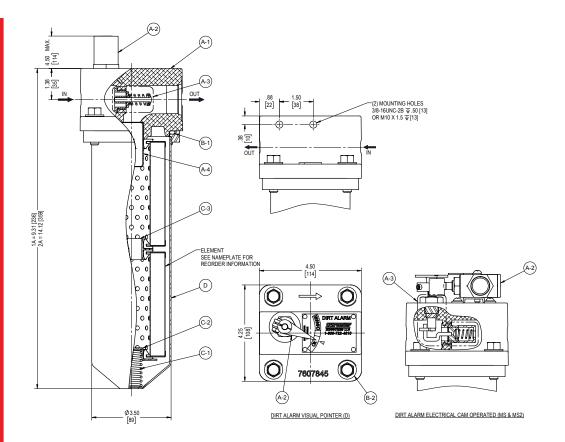
PAF1

MAF1

MF2

Features and Benefits

- Offered in pipe, SAE straight thread, flange and ISO 228 porting
- Various Dirt Alarm® options
- Available with No-Element indicator
- Available with NPTF inlet and outlet female test ports
- Available with magnet inserts
- Available with housing drain plug


Model No. of filter in photograph is TF11AZ10S.

	_
Flow Rating:	Up to 30 gpm (120 L/min) for 150 SUS (32 cSt) fluids
Max. Operating Pressure:	300 psi (20 bar)
Min. Yield Pressure:	1200 psi (80 bar), per NFPA T2.6.1
Rated Fatigue Pressure:	270 psi (19 bar), per NFPA T2.6.1-2005
Temp. Range:	-20°F to 225°F (-29°C to 107°C)
Bypass Setting:	Cracking: 30 psi (2 bar) Full Flow: 51 psi (4 bar)
Porting Head: Element Case:	Cast Aluminum Steel (TF1) or Stainless Steel (WTF1)
Weight of TF1-1A: Weight of TF1-2A:	5.1 lbs. (2.3 kg) 6.3 lbs. (2.9 kg)
Element Change Clearance:	3.50" (90 mm)

Type Fluid Appropriate Schroeder Media **Petroleum Based Fluids** All E media (cellulose) and Z-Media® (synthetic) **High Water Content** All Z-Media® (synthetic) **Invert Emulsions** 10 and 25 μ Z-Media® (synthetic) Water Glycols 3, 5, 10 and 25 µ Z-Media® (synthetic) **Phosphate Esters** All Z-Media® (synthetic) with H (EPR) seal designation Skydrol®

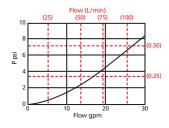
3, 5, 10 and 25 μ Z-Media $\!^{\!0}$ (synthetic) with H.5 seal designation (EPR seals and stainless steel wire mesh in element, and light oil coating on housing exterior)

Return Line Filter

Metric dimensions in ().

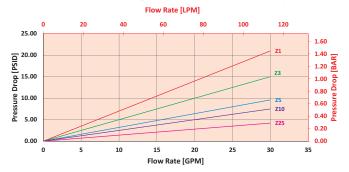
Element Performance Information & Dirt Holding Capacity

	Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402			Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171	
Element	ß _x ≥ 75	$B_x \ge 100$	$B_x \ge 200$	$\beta_x(c) \geq 200$	$\beta_x(c) \geq 1000$
AZ1	<1.0	<1.0	<1.0	<4.0	4.2
AZ3	<1.0	<1.0	<2.0	<4.0	4.8
AZ5	2.5	3.0	4.0	4.8	6.3
AZ10	7.4	8.2	10.0	8.0	10.0
AZ25	18.0	20.0	22.5	19.0	24.0

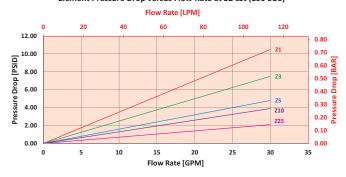

Element Collapse Rating: 150 psid (10 bar)

Flow Direction: Outside In

Element Nominal Dimensions: 3.0" (75 mm) O.D. x 4.5" (115 mm) long


 $\triangle P_{\text{housing}}$

TF1 \triangle **P**_{housing} for fluids with sp gr (specific gravity) = 0.86:



 $\triangle \boldsymbol{P}_{element}$

AZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

2AZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

$$\triangle P_{\text{filter}} = \triangle P_{\text{housing}} + (\triangle P_{\text{element}} * \forall_f)$$

Exercise:

Determine ΔP_{filter} at 15 gpm (57 L/min) for TF11AZ3PD5 using 175 SUS (37.2 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 15 gpm. In this case, $\Delta P_{\text{housing}}$ is 3 psi (.21 bar) on the graph for the TF1 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 15 gpm. In this case, $\Delta P_{\text{element}}$ is 7.5 psi (.52 bar) according to the graph for the AZ3 element.

Because the viscosity in this sample is 175 SUS (37.2 cSt), we determine the **Viscosity Factor** (V_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\triangle \mathbf{P}_{\text{filter}}$, is calculated by adding $\triangle \mathbf{P}_{\text{housing}}$ with the true element pressure differential, $(\triangle \mathbf{P}_{\text{element}} * \mathbf{v}_f)$. The $\triangle \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution

 $\Delta \mathbf{P}_{\text{housing}} = 3 \text{ psi } [.21 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 7.5 \text{ psi } [.52 \text{ bar}]$

 $V_f = 175 \text{ SUS } (37.2 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.2$

 $\Delta \mathbf{P}_{\text{filter}}$ = 3 psi + (7.5 psi * 1.2) = 12 psi

<u>OR</u>

 $\Delta P_{\text{filter}} = .21 \text{ bar} + (.52 \text{ bar} * 1.2) = .83 \text{ bar}$

Pressure
Drop
Information
Based on
Flow Rate
and Viscosity

Note: If your element is not graphed, use the following equation: $\Delta P_{\text{element}} = \text{Flow Rate } x \Delta P_f$. Plug this variable into the overall pressure drop equation.

Ele.	$\triangle \mathbf{P}$	Ele.	$\triangle \mathbf{P}$
А3	0.53	AA3	0.27
A10	0.36	AA10	0.18
A25	0.05	AA25	0.03

Return Line Filter

Filter Model Number Selection

How to Build a Valid Model Number for a Schroeder TF1:

TF1
Example: NOTE: Only box 8 may contain more than one option
BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 6 BOX 7 BOX 8
TF1 - 1 - A3 P - D5 - = TF11A3PD5

BOX 1	BOX 2	BOX 3	BOX 4	BOX 5
Filter Series	Number of Elements	Element Part Number	Seal Material	Magnet Option
TF1	1 2	A3 = 3 μ E media (cellulose) A10 = 10 μ E media (cellulose)	Omit = Buna N H = EPR	Omit = None = Magnet
WTF1		A25 = 25 μ E media (cellulose)	V = Viton®	M inserts
		AZ1 = 1 μ Excellement® Z-Media® (synthetic) AZ3 = 3 μ Excellement® Z-Media® (synthetic) AZ5 = 5 μ Excellement® Z-Media® (synthetic) AZ10 = 10 μ Excellement® Z-Media® (synthetic) AZ25 = 25 μ Excellement® Z-Media® (synthetic)	H.5 = Skydrol® compatibility	
		AM10 = 10 μ M media (reusable metal) AM25 = 25 μ M media (reusable metal) AM60 = 60 μ M media (reusable metal) AM150 = 150 μ M media (reusable metal)		

BOX 6	BOX /	BOX 8
Porting Options	Dirt Alarm [®] Options	

MS12LCT = Low current MS12T

MS16LCT = Low current MS16T

MS17LCT = Low current MS17T

MS13DCLCT = Low current MS13DCT

MS14DCLCT = Low current MS14DCT

female connection

& light (male end)

MS16T = MS16 (see above) w/ thermal lockout

MS = Cam operated switch w/ ½" conduit

MS13 = Supplied w/ threaded connector & light

MS14 = Supplied w/ 5 pin Brad Harrison connector

MS13DCT = MS13 (see above), direct current, w/ thermal lockout

MS14DCT = MS14 (see above), direct current, w/ thermal lockout

	BOX 7	BOX 8
	Dirt Alarm [®] Options	
Visual	Omit = None D = Pointer D5 = Visual pop-up	Omit = None L = Two ½" NPTF inlet
Visual with Thermal Lockout	D8 = Visual w/ thermal lockout	and outlet female test ports
	MS5 = Electrical w/ 12 in. 18 gauge 4-conductor cable MS5LC = Low current MS5 MS10 = Electrical w/ DIN connector (male end only)	N = No-Element indicator
Electrical	MS10LC = Low current MS10 MS11 = Electrical w/ 12 ft. 4-conductor wire MS12 = Electrical w/ 5 pin Brad Harrison connector (male end only)	G440 = ½" drain on bottom of housing
	MS12LC = Low current MS12 MS16 = Electrical w/ weather-packed sealed connector MS16LC = Low current MS16 MS17LC = Electrical w/ 4 pin Brad Harrison male connector	
Electrical with Thermal	MS5T = MS5 (see above) w/ thermal lockout MS5LCT = Low current MS5T MS10T = MS10 (see above) w/ thermal lockout MS10LCT = Low current MS10T MS12T = MS12 (see above) w/ thermal lockout	

NOTES:

- Box 1. WTF1 includes a Anodized Head and a Stainless Steel Bowl.
- Box 3. Replacement element part numbers are identical to contents of Boxes 3 and 4. E media elements are only available with Buna N seals.
- Box 4. For option V, all aluminum parts are anodized. H.5 seal designation includes the following: EPR seals, stainless steel wire mesh on elements, and light oil coating on housing exterior. Viton® is a registered trademark of DuPont Dow Elastomers. Skydrol® is a registered trademark of Solutia Inc.
- Box 6. B porting option supplied with metric mounting holes.

P = 1" NPTF S = SAE-16B = ISO 228 G-1"10 = 10 psi bypass setting 15 = 15 psi bypass setting 20 = 20 psi bypass setting 25 = 25 psi bypass setting 30 = 30 psi bypass setting

40 = 40 psi bypass setting

60 = 60 psi bypass

75 = 75 psi bypass

Lockout

Electrical

Electrical

Thermal

Lockout

Visual with

Visual

setting