

Features and Benefits

■ Base-ported pressure filter

- Can be installed in vertical or horizontal position
- Element changeout from top minimizes oil spillage
- Offered in pipe, SAE straight thread, flanged and ISO 228 porting
- Available with non-bypass option with high collapse element
- Integral inlet and outlet female test points option available
- Offered in conventional subplate porting

40 gpm 5000 psi 345 bar

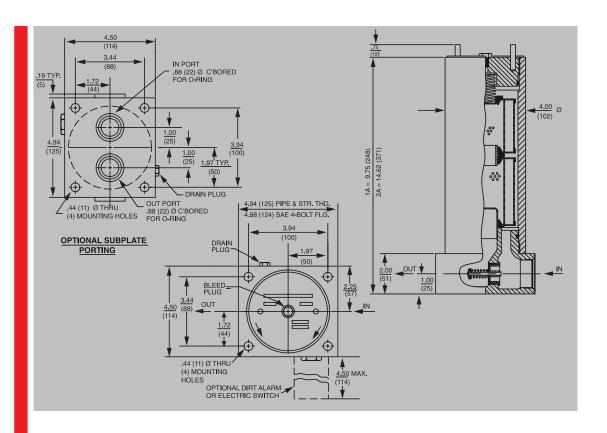
Filter Housing **Specifications**

150 L/min

KF30

KF50

TF50


KC65

KFH50

Compatibility\OF-50-760
FOF60-03
NMF30

Flow Rating:	Up to 40 gpm (150 L/min) for 150 SUS (32 cSt) fluids
Max. Operating Pressure:	5000 psi (345 bar)
Min. Yield Pressure:	15,000 psi (1035 bar), per NFPA T2.6.1
Rated Fatigue Pressure:	3500 psi (240 bar), per NFPA T2.6.1-2005
Temp. Range:	-20°F to 225°F (-29°C to 107°C)
Bypass Setting:	Cracking: 40 psi (2.8 bar) Full Flow: 69 psi (4.8 bar) Non-bypassing model has a blocked bypass.
Porting Base: Element Case & Cap:	
Weight of TF50-1A: Weight of TF50-2A:	` 5'
Element Change Clearance:	8.50" (215 mm)

Type Fluid Appropriate Schroeder Media Petroleum Based All E media (cellulose) and Z-Media® (synthetic) **Fluids High Water Content** All Z-Media® (synthetic) **Invert Emulsions** 10 and 25 μ Z-Media® (synthetic) Water Glycols 3, 5, 10 and 25 µ Z-Media® (synthetic) **Phosphate Esters** All Z-Media® (synthetic) with H (EPR) seal designation 3, 5, 10 and 25 μ Z-Media® (synthetic) with H.5 seal designation (EPR seals and Skydrol® stainless steel wire mesh in element, and light oil coating on housing exterior)

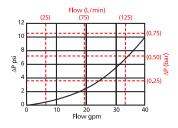
Element Performance Information & Dirt Holding Capacity Metric dimensions in (). Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

		tio Per ISO 4572/N article counter (APC) cali	Filtration Ratio per ISO 16889 Using APC calibrated per ISO 11171		
Element	$\beta_x \ge 75$	$\beta_x \ge 100$	$\beta_x \geq 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \ge 1000$
AZ1	<1.0	<1.0	<1.0	<4.0	4.2
AZ3	<1.0	<1.0	<2.0	<4.0	4.8
AZ5	2.5	3.0	4.0	4.8	6.3
AZ10	7.4	8.2	10.0	8.0	10.0
AZ25	18.0	20.0	22.5	19.0	24.0
CCZX3	<1.0	<1.0	<2.0	4.7	5.8
CCZX10	7.4	8.2	10.0	8.0	10.0
Element	DHC (gm)				
A 74	2.5				

Element	DHC (gm)	
AZ1	25	
AZ3	26	
AZ5	30	
AZ10	28	
AZ25	28	
CCZX3	26*	
CCZX10	28*	

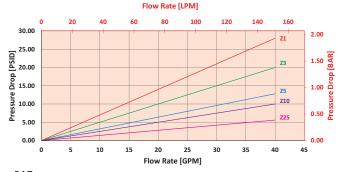
Element Collapse Rating: 150 psid (10 bar) for standard elements

3000 psid (210 bar) for high collapse (ZX) versions

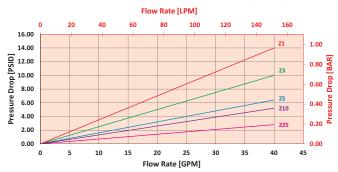

Flow Direction: Outside In * Based on 100 psi terminal pressure

Element Nominal Dimensions: A: 3.0" (75 mm) O.D. x 4.5" (115 mm) long CC: 3.0" (75 mm) O.D. x 9.5" (240 mm) long

TF50


 $\triangle \mathbf{P}_{\text{housing}}$

TF50 $\triangle P_{\text{housing}}$ for fluids with sp gr (specific gravity) = 0.86:



 $\triangle P_{element}$

1AZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

2AZ Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

$$\triangle P_{\text{filter}} = \triangle P_{\text{housing}} + (\triangle P_{\text{element}} * V_f)$$

Exercise:

Determine ΔP_{filter} at 15 gpm (57 L/min) for TF501AZ10SD5 using 175 SUS (37.2 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 15 gpm. In this case, $\Delta P_{\text{housing}}$ is 1.8 psi (.12 bar) on the graph for the TF50 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 15 gpm. In this case, $\Delta P_{\text{element}}$ is 3.8 psi (.26 bar) according to the graph for the AZ10 element.

Because the viscosity in this sample is 175 SUS (37.2 cSt), we determine the **Viscosity Factor** (V_f) by dividing the **Operating Fluid Viscosity** with the **Standard Viscosity** of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, $\triangle \mathbf{P}_{\text{filter}}$, is calculated by adding $\triangle \mathbf{P}_{\text{housing}}$ with the true element pressure differential, $(\triangle \mathbf{P}_{\text{element}} * \mathbf{v}_f)$. The $\triangle \mathbf{P}_{\text{element}}$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

Solution:

 $\Delta \mathbf{P}_{\text{housing}} = 1.8 \text{ psi } [.12 \text{ bar}] \mid \Delta \mathbf{P}_{\text{element}} = 3.8 \text{ psi } [.26 \text{ bar}]$

 $V_f = 175 \text{ SUS } (37.2 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.2$

$$\Delta P_{\text{filter}} = 1.8 \text{ psi} + (3.8 \text{ psi} * 1.2) = 6.4 \text{ psi}$$

<u>OR</u>

 $\Delta P_{\text{filter}} = .12 \text{ bar} + (.26 \text{ bar} * 1.2) = .43 \text{ bar}$

Pressure
Drop
Information
Based on
Flow Rate
and Viscosity

Note:

If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{\text{element}} = \text{Flow Rate } \mathbf{x} \ \Delta \mathbf{P}_f \ \text{Plug}$ this variable into the overall pressure drop equation.

Ele.	$\triangle \mathbf{P}$	Ele.	$\triangle \mathbf{P}$
A3	0.53	AA3	0.16
A10	0.36	AA10	0.18
A25	0.05	AA25	0.03
CCZX3	0.29		
CCZX10	0.26		

Filter Model Number Selection

How to Build a Valid Model Number for a Schroeder TF50:

	BOX 1 BOX 2	BOX 3	BOX 4 BOX 5	BOX 6 BOX 7	BOX 8 BOX 9	BOX 10
TF50	TF50 -	-	_	\vdash		

BOX 1	BOX 2	BOX 3	BOX 4	BOX 5	BOX 6	BOX 7	BOX 8	BOX 9	BOX 10	
TF50 -	- 1 -	AZ5			_ S _		- D5 -			= TF501AZ5SD5

BOX 1 **Filter** Series

TF50

2 (AZ elements only) TFN50 (Nonbypassing: requires ZX high collapse elements)

Media Type AZ1 = 1 μ Excellement[®] Z-Media[®] (synthetic)

AZ3 = 3 µ Excellement[®] Z-Media[®] (synthetic) AZ5 = 5 µ Excellement[®] Z-Media[®] (synthetic) AZ10 = 10 µ Excellement[®] Z-Media[®] (synthetic)

AZ25 = $25 \mu \text{ Excellement}^{\text{@}} \text{ Z-Media}^{\text{@}} \text{ (synthetic)}$

CCZX1 = 1 μ Excellement[®] Z-Media[®] (high collapse center tube) CCZX3 = 3μ Excellement[®] Z-Media[®] (high collapse center tube)

CCZX5 = $5 \mu \text{ Excellement}^{\text{(B)}} \text{ Z-Media}^{\text{(B)}}$ (high collapse center tube) CCZX10 = 10μ Excellement[®] Z-Media[®] (high collapse center tube) CCZX25 = 25μ Excellement[®] Z-Media[®] (high collapse center tube)

BOX 3

BOX 4 **Seal Material**

Omit = Buna N

= Viton®

= Skydrol®

compatibility

= EPR

BOX 2

Number

1

BOX 5 **Magnet option**

Omit = None M = Magnet inserts

(not available w/ indicator in cap or TFN50)

BOX 6 **Porting**

P = 1" NPTF S = SAE-16

Visual

Lockout

F = 1" SAE 4-bolt flange Code 61 O = Subplate B = ISO 228 G-1

BOX 7

Bypass Omit = 40 PSI Bypass

X = Blocked bypass

50 = 50 psi bypass setting

60 = 60 psi bypass setting

BOX 8

Test Points

- = Two ¹/₄" NPTF inlet and outlet female test ports
- = Series 1215 ⁷/16 UNF Schroeder Check Test Point installation in cap (upstream)
- = Series 1215 7/16 UNF Schroeder Check Test Point installation in block (upstream and downstream)

BOX 9

	Dirt Alarm® Options
None	Omit = None
	D = Pointer
	DE VC I

D5 = Visual pop-up D5C = D5 in cap D9 = All stainless D5

Visual with D8 = Visual w/ thermal lockout Thermal

D8C = D8 in cap Lockout

MS5 = Electrical w/ 12 in. 18 gauge 4-conductor cable MS5LC = Low current MS5 MS10 = Electrical w/ DIN connector (male end only)

MS10LC = Low current MS10

MS11 = Electrical w/ 12 ft. 4-conductor wire Electrical MS12 = Electrical w/ 5 pin Brad Harrison connector (male end only)

MS12LC = Low current MS12 MS16 = Electrical w/ weather-packed sealed connector

MS16LC = Low current MS16 MS17LC = Electrical w/ 4 pin Brad Harrison male connector MS5T = MS5 (see above) w/ thermal lockout

MS5LCT = Low current MS5T MS10T = MS10 (see above) w/ thermal lockout

Electrical MS10LCT = Low current MS10Twith MS12T = MS12 (see above) w/ thermal lockout Thermal MS12LCT = Low current MS12T

MS16T = MS16 (see above) w/ thermal lockout MS16LCT = Low current MS16T

MS17LCT = Low current MS17T $MS = Cam operated switch w <math>\frac{1}{2}$ conduit female connection Electrical MS13 = Supplied w/ threaded connector & light Visual MS14 = Supplied w/ 5 pin Brad Harrison connector & light (male end)

MS13DCT = MS13 (see above), direct current, w/ thermal lockout Electrical Visual with MS13DCLCT = Low current MS13DCT Thermal MS14DCT = MS14 (see above), direct current, w/ thermal lockout MS14DCLCT = Low current MS14DCT

BOX 10

Additional Options

Omit = None

= No-Element indicator (not available with Ν

G509 = Dirt alarm and drain opposite standard

G588 = Electrical switch and drain opposite

NOTES:

Box 7. When X is paired with a standard filter series, a standard bushing and spring plate will be used.