Top-Ported Pressure Filter YF30

Features and Benefits

- Top-ported pressure filter
- All aluminum assembly
- Meets HF2 automotive standards
- Offered in straight thread porting
- Optional drain plug in bowl for easy servicing
- Available with non-bypass option

Model No. of filter in photograph is YF308YZ10SD5.

Flow Rating: Up to 25 gpm (100 L/min) for 150 SUS (32 cSt) fluids Max. Operating Pressure: 3000 psi (210 bar) Min. Yield Pressure: 10,000 psi (690 bar), per NFPA T2.6.1 Rated Fatigue Pressure: 1800 psi (124 bar), per NFPA T2.6.1-2005 Temp. Range: -20°F to 225°F (-29°C to 107°C) Bypass Setting: Cracking: 50 psi (3.4 bar) Non-bypassing model has a blocked bypass. Aluminum Porting Head: Element Case: Aluminum Weight of YF30-4Y: 3.75 lbs. (1.70 kg) Weight of YF30-8Y: 4.25 lbs. (1.93 kg) 4.50" (115 mm) Element Change Clearance:

25 gpm 100 L/min 3000 psi 210 bar

YF30

KF30 KF50

KC50

KC65

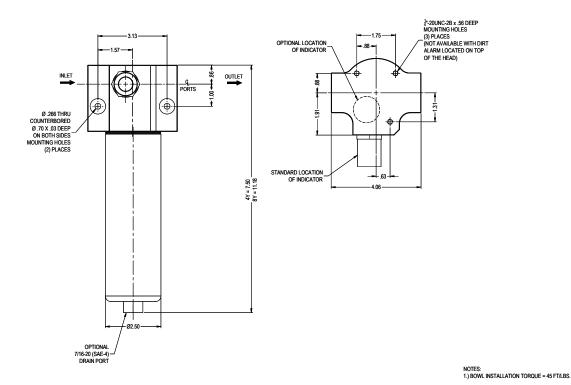
Fluid Compatibility

Filter

Housing

Specifications

20-CRZX10


Type Fluid Appropriate Schroeder Media

Petroleum Based Fluids All E Media (cellulose) and Z-Media® (synthetic)

Invert Emulsions 10 and 25 μ Z-Media® (synthetic)

High Water Content All Z-Media® (synthetic)

Top-Ported Pressure Filter

Metric dimensions in ().

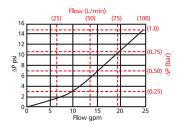
Dimensions shown are inches (millimeters) for general information and overall envelope size only. For complete dimensions please contact Schroeder Industries to request a certified print.

		io Per ISO 4572/N article counter (APC) ca		o per ISO 16889 Ited per ISO 11171	
Element	ß _x ≥ 75	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \ge 200$	$\beta_x(c) \geq 1000$
4YZ1/8YZ1	<1.0	<1.0	<1.0	<4.0	4.2
4YZ3/8YZ3	<1.0	<1.0	<2.0	<4.0	4.8
4YZ5/8YZ5	2.5	3.0	4.0	4.8	6.3
4YZ10/8YZ10	7.4	8.2	10.0	8.0	10.0
4YZ25/8YZ25	18.0	20.0	22.5	19.0	24.0
4YZX5/8YZX5	2.5	3.0	4.0	5.6	7.2
4YZX10/8YZX10	7.4	8.2	10.0	8.0	9.8

Element	DHC (gm)	Element	DHC (gm)
4YZ1	6.3	8YZ1	12.1
4YZ3	5.1	8YZ3	9.9
4YZ5	6.4	8YZ5	12.4
4YZ10	5.4	8YZ10	10.5
4YZ25	4.9	8YZ25	9.4
4YZX5	4.3	8YZX5	8.9
4YZX10	4.3	8YZX10	8.9

Element Collapse Rating: 150 psid (10 bar) for standard elements

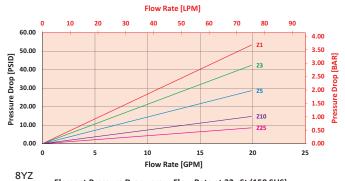
3000 psid (210 bar) for high collapse (ZX) versions

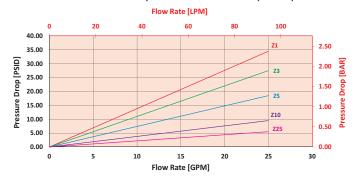

Flow Direction: Outside In

Element Nominal Dimensions: 4Y: 1.77 " (45 mm) O.D. x 4.50 " (114 mm) long 8Y: 1.77 " (45 mm) O.D. x 8.21 " (209 mm) long

Top-Ported Pressure Filter YF3

 $\triangle \mathbf{P}_{\text{housing}}$


YF30 \triangle **P**_{housing} for fluids with sp gr (specific gravity) = 0.86:


 $\triangle P_{element}$

4YZ

Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

Element Pressure Drop versus Flow Rate at 32 cSt (150 SUS)

 $\triangle P_{\text{filter}} = \triangle P_{\text{housing}} + (\triangle P_{\text{element}} * V_f)$

Exercise:

Determine ΔP_{filter} at 10 gpm (37.9 L/min) for YF304YZ10WSDRD5 using 200 SUS (42.6 cSt) fluid.

Use the housing pressure curve to determine $\Delta P_{\text{housing}}$ at 10 gpm. In this case, $\Delta P_{\text{housing}}$ is 3 psi (.21 bar) on the graph for the YF30 housing.

Use the element pressure curve to determine $\Delta P_{\text{element}}$ at 10 gpm. In this case, $\Delta P_{\text{element}}$ is 8 psi (.55 bar) according to the graph for the 4YZ10 element.

Because the viscosity in this sample is 200 SUS (42.6 cSt), we determine the Viscosity Factor (V.) by dividing the Operating Fluid Viscosity with the Standard Viscosity of 150 SUS (32 cSt). To best determine your Operating Fluid Viscosity, please reference the chart in Appendix D.

Finally, the overall filter pressure differential, ΔP_{filter} , is calculated by adding $\Delta P_{\text{housing}}$ with the true element pressure differential, ($\Delta \dot{\mathbf{P}}_{\text{element}}^* \vee_f$). The $\Delta \dot{\mathbf{P}}_{\text{element}}^*$ from the graph has to be multiplied by the viscosity factor to get the true pressure differential across the element.

 $\triangle \mathbf{P}_{\text{housing}} = 3 \text{ psi } [.21 \text{ bar}] \mid \triangle \mathbf{P}_{\text{element}} = 8 \text{ psi } [.55 \text{ bar}]$

 $V_f = 200 \text{ SUS } (42.6 \text{ cSt}) / 150 \text{ SUS } (32 \text{ cSt}) = 1.3$

$$\Delta \mathbf{P}_{\text{filter}} = 3 \text{ psi} + (8 \text{ psi} * 1.3) = 13.4 \text{ psi}$$

 $\Delta P_{\text{filter}} = .21 \text{ bar} + (.55 \text{ bar} * 1.3) = .93 \text{ bar}$

Drop Information Based on Flow Rate and Viscosity

Pressure

If your element is not graphed, use the following equation: $\Delta \mathbf{P}_{\text{element}} = \overline{\text{Flow}} \text{ Rate } \mathbf{x} \Delta \mathbf{P}_f \text{ Plug}$ this variable into the overall pressure drop equation.

Ele.	∆P	Ele.	ΔΡ	
4YZX5	1.65	8YZX5	0.92	
4YZX10	0.09	8YZX10	0.63	

YF30

Top-ported Pressure Filter

Filter Model Number Selection

How to Build a Valid Model Number for a Schroeder YF30:

BOX 1	BOX 2	BOX 3	BOX 4	BOX 5	BOX 6	BOX 7	BOX 8
YF30							_

BOX 1 BOX	2 BOX 3	BOX 4 BOX	5 BOX 6	BOX 7	BOX 8	
YF30 - 4	- YZ10	- W - S		- DR -	D5	= YF304YZ10WSDRD5

BOX 1	BOX 2	BOX 3	BOX 4	BOX 5
Filter Series	Element Length (in)	Element Size and Media	Seal Material	Inlet Port
VE20	4	YZ1 = Y size 1 μ Excellement [®] Z-Media [®] (synthetic)	Omit = Buna N	S = SAE-12
YF30 8	YZ3 = Y size 3 μ Excellement [®] Z-Media [®] (synthetic)	V = Viton®	O = Subplate	
YFN30 (Non- bypassing: requires ZX high collapse elements)		YZ5 = Y size 5 μ Excellement [®] Z-Media [®] (synthetic) YZ10 = Y size 10 μ Excellement [®] Z-Media [®] (synthetic) YZ25 = Y size 25 μ Excellement [®] Z-Media [®] (synthetic) YZX5 = Y size 5 μ Excellement [®] Z-Media [®] (high collapse center tube)	W = Buna N, Anodized Aluminum parts	(contact factory)
		YZX10 = Y size 10 μ Excellement [®] Z-Media [®]		

(high collapse center tube)

with

Thermal

Lockout

Dirt Alarm® Location

Omit = Side of filter

BOX 6

head T = Top offilter
head

BOX 7 Optional Bowl Drain

Omit = No drain DR = Drain BOX 8

BOX 8					
Dirt Alarm® Options					
	Omit =	None			
Visual	D5 =	Visual pop-up			
Visual with Thermal Lockout	D8 =	Visual w/ thermal lockout			
	MS5 =	Electrical w/ 12 in. 18 gauge 4-conductor cable			
	MS5LC =	Low current MS5			
	MS10 =	Electrical w/ DIN connector (male end only)			
	MS10LC =	Low current MS10			
Electrical	MS11 =	Electrical w/ 12 ft. 4-conductor wire			
Liectrical	MS12 =	Electrical w/ 5 pin Brad Harrison connector (male end only)			
	MS12LC =	Low current MS12			
	MS16 =	Electrical w/ weather-packed sealed connector			
	MS16LC =	Low current MS16			
	MS17LC =	Electrical w/ 4 pin Brad Harrison male connector			
	MS5T =	MS5 (see above) w/ thermal lockout			
	MS5LCT =	Low current MS5T			
	MS10T =	MS10 (see above) w/ thermal lockout			
Electrical	MS10LCT =	Low current MS10T			
with Thermal	MS12T =	MS12 (see above) w/ thermal lockout			
Lockout	MS12LCT =	Low current MS12T			
200,1001	MS16T =	MS16 (see above) w/ thermal lockout			
	MS16LCT =	Low current MS16T			
	MS17LCT =	Low current MS17T			
Electrical Visual	MS13DC =	Supplied w/ threaded connector & light			
	MS14DC =	Supplied w/ 5 pin Brad Harrison connector & light (male end)			
Electrical	MS13DCT =	MS13 (see above), direct current, w/ thermal lockout			
Visual	MS13DCLCT =	Low current MS13DCT			

 $\mbox{MS14DCT} = \frac{\mbox{MS14 (see above), direct current,}}{\mbox{w/ thermal lockout}}$

MS14DCLCT = Low current MS14DCT

NOTES:

- Box 2. Replacement element part numbers are combination of Boxes 2,3, and 4. Example 4YZ10V
- Box 4. For options V and W, all aluminum parts are anodized. Viton® is a registered trademark of DuPont Dow Elastomers.
- Box 8. Standard indicator setting for nonbypassing model is 50 psi unless otherwise specified.